COHOMOLOGY OF THE STEENROD ALGEBRA

W.-H. Lin*
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China

Communicated by J.F. Adams
Received 8 December 1982

1. Introduction

Let A denote the mod 2 Steenrod algebra. Let $h_{i} \in \mathrm{Ext}_{A}^{1,2^{\prime}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ be the classes corresponding to the generators $\mathrm{Sq}^{2^{i}} \in A$ as described by Adams in [2]. D.M. Davis shows in [5] that h_{i} are acted on faithfully by portions of Ext ${ }_{A}^{* *}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ which increase with i. More precisely, he shows that if $\alpha \neq 0$ in $\operatorname{Ext}_{A}^{s_{A} t}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ with $0<t-s<2^{j}$, then $\alpha h_{i} \neq 0$ for $i \geq 2 j+1$. In this paper we prove a similar result. We prove h_{i}^{2} are acted on faithfully by portions of $\operatorname{Ext}_{A}^{* *}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ which increase with i. To state precisely the result we fix sorne notation. Let A_{l} be the sub-Hopf-algebra of A generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots, \mathrm{Sq}^{2^{2}}$. The set $\left\{n \mid \exists a \neq 0\right.$ in A_{l} such that $\left.|a|=n\right\}$ is bounded where $|a|$ means $\operatorname{deg}(a)$. Let d_{l} be the largest integer in this set. We will show later that $d_{l}=(l-1) 2^{l+2}+l+5$.

Theorem 1.1. Let α be a non-zero class in $\operatorname{Ext}_{A}^{s_{t}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ with $t-s>0$. Let i be the smallest integer such that $2^{i}-2 \geq t-s$. Then $\alpha h_{m}^{2} \neq 0$ for all m such that $2^{m-1}>s d_{i+1}-t$.

Corollary 1.2. $h_{i_{1}}^{2} h_{i_{2}}^{2} \cdots h_{i_{n}}^{2} \neq 0$ in $\mathrm{Ext}_{: 1}^{5} ;\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ for any finite increasing sequence $\left\{i_{1}, i_{2}, \ldots i_{n}\right\}$ of positive integers such that the successive numerical conditions in Theorem 1.1 are satisfied.

It is a conjecture [18] that the classes h_{i}^{2} survive the Adams spectral sequence for the stable homotopy groups of spheres [1]. This conjecture is known to be true for $0 \leq i \leq 5$. If the conjecture is true, the 1 the classes in (1.2) probably also survive the Adams spectral sequence. These prodems, however, remain to be done.

Theorem 1.1 stems from a conjecture of Mahowald in [7] (Conjecture V.2.4); in particular it shows that a large part of Mahowald's conjecture is true. We refer to Mahowald's memoir [7] for the significance of his conjecture in homotopy.

[^0]The following relations hold in $\operatorname{Ext}_{A}^{* *}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$:
(1) $h_{i+1} h_{i}=0$,
(2) $h_{i+2}^{2} h_{i}=0$,
(3) $h_{i+1}^{3}=h_{i+2} h_{i}^{2}$,
(4) $h_{0}^{2^{i+1}} h_{i+1}=0$,
(5) $h_{0}^{2^{1}} h_{i+2}^{2}=0$,
(6) $h_{i}^{2} h_{i+3}^{2}=0$.

The first four of these are due to J.F. Adams [2,3] and the rest are due to J.P. May [10]. It has been a conjecture that these are the only relations among the h_{i} 's. Davis [5] has given an evidence for the conjecture by showing that these relations are closed under the squaring operations

$$
\mathrm{Sq}^{i}: \mathrm{Ext}_{A}^{k_{A}^{k}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right) \rightarrow \operatorname{Ext}_{A}^{k+i, 2 j}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)
$$

of Liulevicius [6]. From relations (3) we see any non-zero monomial α in the h_{i} 's can be uniquely expressed as $\alpha=h_{0}^{\varepsilon_{0}} h_{i_{1}}^{\varepsilon_{1}} h_{i_{2}}^{\varepsilon_{2}} \cdots h_{i_{n}}^{\varepsilon_{n}}$ where $0<i_{1}<i_{2}<\cdots<i_{n}, \varepsilon_{0} \geq 0$ and $\varepsilon_{j}=1$ or 2 for $j \leq 1$. Theorem 1.1 shows that monomials of this form are non-zero provided $\varepsilon_{0}=0$ and the integers i_{j} are far apart from one another, which is a part of the conjecture.

Our proof of Theorem 1.1 is based on a spectral sequence of Aclams [2]. In Section 2 we describe this spectral sequence and study some of its properties in the case which is not discussed in [2]. In Section 3 we make some calculations in the Steenrod algebra which arise when using the spectral sequence of Adams. In Section 4 we complete the proof of Theorem 1.1.

2. A spectral sequence of Adams

Eet Γ a be connected, locally finite Hópf algebra over \mathbb{Z}_{2}, Λ a sub-Hopf-algebra of Γ, and $\bar{\Gamma}$ and $\bar{\Lambda}$ the augmentation ideals of Γ and Λ respectively. Let $\Omega=\Gamma / \Gamma \cdot \bar{\Lambda}$ and $\bar{\Omega}=\bar{\Gamma} / \bar{\Gamma} \cdot \bar{\Lambda} . \Lambda$ acts on Ω and $\bar{\Omega}$ from the left via the inclusion $\Lambda \rightarrow \Gamma$. Let $F\left(\Gamma^{*}\right)$ be the cobar construction of Γ. We filter it by setting

$$
\left[\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{s}\right] \in F\left(\Gamma^{*}\right)^{(p)}=F^{(p)}
$$

if α_{t} annihilates $\bar{\Lambda}$ for at least p values of i. So $F\left(\Gamma^{*}\right)=F^{(0)} \supset F^{(1)} \supset \cdots$.
Theorem 2.1 (Adams). This filtration of $F\left(\Gamma^{*}\right)$ defines a spectrai sequence $\left\{E_{r}^{p, q}\right\}$ which converges to $\mathrm{Ext}_{i}^{* *}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ and one has

$$
E_{1}^{p, q}=H^{p+q}\left(F^{(p+1)}\right) \cong \operatorname{Ext}_{1}^{\varphi}\left((\bar{\Omega})^{p}, \mathbb{Z}_{2}\right)
$$

Here the superscripts " $p+q$ " and " q " refer to homological degrees and

$$
(\bar{\Omega})^{p}= \begin{cases}\mathbb{Z}_{2} & \text { if } p=0, \\ \bar{\Omega} \underbrace{\otimes \cdots \otimes \otimes}_{p} \bar{\Omega} & \text { if } p>0 .\end{cases}
$$

We recall a part of Adams' proof of Theorem 2.1. We begin by considering the vector-space dual of the spectral sequence $\left[E_{r}^{p, q}\right\}$. Let $\bar{B}(\Gamma)$ be the bar construction of Γ. We filter it by setting

$$
\left[a_{1}\left|a_{2}\right| \cdots \mid a_{s}\right] \in \tilde{B}(\Gamma)^{(p)}=\bar{B}^{(p)}
$$

if $a_{i} \in \bar{\Lambda}$ for at least $s-p$ values of i. Then $F^{(p)}=\left(\bar{B}(\Gamma) / \bar{B}^{(p-1)}\right)^{*}$. Thus the resulting spectral sequence $\left\{E_{p, q}^{r}\right\}$ of this filtration on $\bar{B}(\Gamma)$ is the \mathbb{Z}_{2}-dual of $\left\{E_{r}^{p, q}\right\}$. It suffices to show

$$
E_{p, q}^{1}=H_{p+q}\left(\bar{B}^{(p)} / \bar{B}^{(p-1)} \cong \operatorname{Tor}_{q}\left(\mathbb{Z}_{2},(\bar{\Omega})^{p}\right)\right.
$$

Adams proves this by considering certain subquotient complexes of the bar resolution $\Gamma \otimes \bar{B}(\Gamma)$. Specifically he considers for each $p \geq 0$ the quotient

$$
C^{(p)}=\Lambda \otimes \bar{B}^{(p)}+\Lambda \otimes \bar{B}^{(p-1)} / \Gamma \otimes \bar{B}^{(p-1)}
$$

It is easy to see that $C^{(p)}=\Lambda \otimes\left(\bar{B}^{(p)} / \bar{B}^{(p-1)}\right)$; so $C_{s}^{(p)}=0$ if $s<p$ where the suffix s refers to homological degree.

Lemma 2.2.

$$
H_{s}\left(C^{(p)}\right) \cong \begin{cases}(\bar{\Omega})^{p} & (s=p) \\ 0 & (s \neq p)\end{cases}
$$

The isomorphism for $s=p$ is obtained by projecting Λ to \mathbb{Z}_{2} and $(\bar{\Gamma})^{p}$ to $(\bar{\Omega})^{p}$.
Lemma 2.2 is Lemma 2.3.1 in [2] to which we refer for details of the proof.
Lemma 2.2 shows that the free Λ-complex $C^{(p)}$ is a free resolution of $(\bar{\Omega})^{p}$ over Λ where the Λ-action on $(\bar{\Omega})^{p}$ is determined by $C^{(p)}$ and 2.2 . Thus

$$
E_{p, q}^{1}=H_{p+q}\left(\bar{B}^{(p)} / \bar{B}^{(p-l)}\right) \cong H_{p+q}\left(\mathbb{Z}_{2} \otimes_{\Lambda} C^{(p)}\right)=\operatorname{Tor}_{q}^{\Lambda}\left(\mathbb{Z}_{2},(\bar{\Omega})^{p}\right)
$$

This proves Theorem 2.1.
The action of Λ on $\bar{\Omega}$ is the usual one. For $p \geq 2$ the action of Λ on $(\bar{\Omega})^{p}$, however, is not the diagonal action. For our purpose it suffices to consider this action for $p=2$ which is described as follows. By the Milnor-Moore Theorem [12] Γ is free as a left or right module over Λ. Let $\left\{\gamma_{i}\right\}_{i \geqq 0}$ be a right Λ-base for Γ with $\gamma_{0}=1$. Let $\bar{\gamma}_{i}$ be the image of γ_{i} in Ω. Then $\left\{\bar{\gamma}_{i}\right\}_{i \geq 1}$ is a \mathbb{Z}_{2}-base for $\bar{\Omega}$. Given $a \in \Lambda$ and $\bar{\gamma}_{p} \otimes \bar{\gamma}_{p} \in(\bar{\Omega})^{2}$, let $a \gamma_{p}=\sum_{\lambda=1}^{n} \gamma_{j(\lambda)} a_{j(\lambda)}$ with $a_{j(\lambda)} \in \Lambda$. Then

$$
\begin{equation*}
a\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)=\sum_{\lambda=1}^{n} \bar{\gamma}_{j(\lambda)} \otimes a_{j(\lambda)} \bar{\gamma}_{q} . \tag{1}
\end{equation*}
$$

This formula is derived from Adams' proof of Lemma 2.2 in [2]. A conceptually simple way to describe this action is the following. Γ, and hence Λ, acts from the left on $\Gamma \otimes_{A} \bar{\Omega} \equiv \Omega \otimes \bar{\Omega}$ in a natural way. Then $(\bar{\Omega})^{2}$ is a Λ-submodule of $\Omega \otimes \bar{\Omega}$. This Λ-action on $(\bar{\Omega})^{2}$ can be shown to be isomorphic to the diagonal action (see (2.1) in [4]).

Remark 2.3. In [2] Adams discusses his spectral sequence only for the case that Λ is central in Γ, i.e., $a b=b a$ for all $a \in \Lambda$ and $b \in \Gamma$ (to serve other purposes there). In this case $\bar{\Omega}$ (hence $(\bar{\Omega})^{p}$ for $p \geq 2$) gets trivial operations from Λ. It suffices to assume Λ is normal in Γ, i.e., $\Gamma \cdot \bar{\Lambda}=\bar{\Lambda} \cdot \Gamma$ in order to have $\bar{\Omega}$ get trivial operations from Λ. Here we do not impose either condition on Λ as in our applications of Theorem 2.1 we shall take Γ to be the Steenrod algebra A and $\Lambda=A_{l}$ for some l where the A_{l} 's are as described in Section 1 and these subalgebras are not normal in A.

To apply Theorem 2.1 in proving Theorem 1.1 we need to study the complexes $F^{(1)} / F^{(2)}$ and $F^{(2)} / F^{(3)}$. Consider the cobar constructions $F\left(\Lambda^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{p}, p=1,2$. Our result (Proposition 2.4) is that there are a natural embedding

$$
f_{1}: F\left(\Lambda^{*}\right) \otimes \bar{\Omega}^{*} \rightarrow F^{(1\rangle} / F^{(2)}
$$

and a projection

$$
g_{2}: F^{(2)} / F^{(3)} \rightarrow F\left(\Lambda^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}
$$

such that both are chain equivalences. The map g_{2} is not natural; it depends on the choice of a right Λ-base for Γ. It is possible to show that $F^{(p)} / F^{(p+1)}$ is chain equivalent to $F\left(\Lambda^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{\rho}$ for any p. For our purpose we will only consider f_{1} and g_{2}. Explicit formulae describing f_{1} and g_{2} will be relevant. It sulfices to describe their \mathbb{Z}_{2}-duals

$$
\bar{f}_{1}: \bar{B}^{(1)} / \bar{B}^{(0)} \rightarrow \bar{B}(\Lambda) \otimes \bar{\Omega} \quad \text { and } \quad \bar{g}_{2}: \bar{B}(\Lambda) \otimes(\bar{\Omega})^{2} \rightarrow \bar{B}^{(2)} / \bar{B}^{(1)}
$$

We begin with f_{1}. For $a \in \bar{\Gamma}$ let \bar{a} be its image in $\bar{\Omega}$. Given $\left[a_{1}|\cdots| a_{s}\right] \in \bar{B}^{(1)} \bar{B}^{(0)}$, there is a unique a_{i} such that $a_{i} \oplus \bar{\Lambda}$. Then define \bar{f}_{1} by

$$
f_{1}\left(\left[a_{1}|\cdots| a_{s-1} \mid a_{s}\right]\right)= \begin{cases}{\left[a_{1}|\cdots| a_{s-1}\right] \otimes \bar{a}_{s}} & (i=s) \tag{2}\\ 0 & (i<s)\end{cases}
$$

\bar{g}_{2} is a little complicated to describe. We choose a right Λ-base $\left\{\gamma_{i}\right\}_{i \geq 0}$ for Γ with $\gamma_{0}=1$. Then $\left\{\bar{\gamma}_{i}\right\}_{i \geq 1}$ is a \mathbb{Z}_{2}-base for $\bar{\Omega}$. We first define a \mathbb{Z}_{2}-map $\phi: M \rightarrow M$ where $M \subset \bar{B}^{(1)} / \bar{B}^{(0)}$ is generated by all $\left[a_{1}|\cdots| a_{s}\right]$ such that the unique $a_{j} \notin \bar{\Lambda}$ lies in $\left\{\gamma_{i}\right\}_{i \geq 1}$. Given $\left[a_{1}|\cdots| a_{s}\right] \in M$. Let a_{j} be the eiement such that $a_{j}=\gamma_{k}$ for some $k \geq 1$. We define $\phi\left(\left[a_{1}|\cdots| a_{s}\right]\right)$ by induct in on j. If $j=1$, then set

$$
\phi\left(\left[\gamma_{k}\left|a_{2}\right| \cdots \mid a_{s}\right]\right)=\left\{\gamma_{k}\left|a_{2}\right| \cdots \mid a_{s}\right] .
$$

Suppose $j>1$ and suppose $\phi\left(\left[a_{1}^{\prime}|\cdots| a_{s}^{\prime}\right]\right)$ is defined for all $\left[a_{1}^{\prime}|\cdots| a_{s}^{\prime}\right]$ such that the integer v for which $a_{v}^{\prime}=\gamma_{l}$ is less than j. Let $a_{j-1} \gamma_{k}=\sum_{i-1}^{n} \gamma_{t(\lambda)} a_{t(\lambda)}$ with $\gamma_{t(\lambda)} \in\left\{\gamma_{i}\right\}_{i \geq 0}$ and $a_{t(\lambda)} \in A$. By inductive hypsthesis $\phi\left(\left[a_{1}|\cdots| a_{j-2}\left|\gamma_{t(\lambda)}\right| a_{t(\lambda)}\left|a_{j+1}\right| \cdots \mid a_{s}\right]\right)$ is defined for all λ. Then define

$$
\begin{aligned}
\phi\left(\left[a_{1}|\cdots| a_{j-1}\left|\gamma_{k}\right| a_{j+1} \mid \cdots i, a_{\mathrm{s}}\right]\right)= & =\left[a_{1}|\cdots| a_{j-1}\left|\gamma_{k}\right| a_{j+1}|\cdots| a_{s}\right] \\
& +\sum_{j=1}^{n} \phi\left(\left[a_{1}|\cdots| a_{j-2}\left|\gamma_{t(\lambda)}\right| a_{t(\lambda)}\left|a_{j+1}\right| \cdots \mid a_{s}\right]\right)
\end{aligned}
$$

Here $\left[c_{1}|\cdots| c_{s}\right]=0$ if $c_{i}=1$ for some i. This convention is also adopted in what follows.

We proceed to define \bar{g}_{2}. Given $\left[a_{1}|\cdots| a_{s}\right] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right) \in \bar{B}(\Lambda) \otimes(\bar{\Omega})^{2}$, we define $\bar{g}_{2}\left(\left(a_{1}|\cdots| a_{s}\right] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)\right)$ by induction on s. If $s=0$, then set

$$
\bar{g}_{2}\left(\bar{\gamma}_{p} \otimes \tilde{\gamma}_{q}\right)=\left[\gamma_{p} \mid \gamma_{q}\right] .
$$

Suppose $s>0$ and suppose $\bar{g}_{2}\left(\left[a_{2}|\cdots| a_{s}\right] \otimes\left(\bar{\gamma}_{p} \otimes \tilde{\gamma}_{q}\right)\right)$ is defined. Let

$$
\sum_{\mu=1}^{1}\left[\gamma_{k(\mu)}\left|b_{2(\mu)}\right| \cdots\left|b_{s+1(\mu)}\right| \gamma_{q}\right]
$$

be the sum of all those elements $\left[b_{1}^{\prime}|\cdots| b_{s+1}^{\prime} \mid b_{s+2}^{\prime}\right]$ appearing in the sum $\bar{\delta}_{2}\left(\left[a_{2}|\cdots| a_{s}\right] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)\right)$ such that $b_{1}^{\prime} \in\left\{\gamma_{i}\right\}_{i \geq 1}$ and $b_{s+2}^{\prime}=\gamma_{q}$ (if there is such a sum). Let $a_{1} \gamma_{k(\mu)}=\sum_{\lambda} \gamma_{t(\lambda, \mu)} a_{t(\lambda, \mu)}$ with $\gamma_{t(\lambda, \mu)} \in\left\{\gamma_{i}\right\}_{i \geq 0}$ and $a_{t(\lambda, \mu)} \in \Lambda$. Then define

$$
\begin{align*}
\bar{g}_{2}\left(\left[a_{1}\left|a_{2}\right| \cdots \mid a_{s}\right]\right. & \left.\otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)\right)=\left[a_{1} \mid \bar{g}_{2}\left(\left[a_{2}|\cdots| a_{s}\right] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)\right)\right] \\
& +\sum_{\lambda, \mu}\left[\gamma_{t(\lambda, \mu)} \mid \phi\left(\left[a_{t(\lambda, \mu)}\left|b_{2(\mu)}\right| \cdots\left|b_{s+1(\mu)}\right| \gamma_{q}\right]\right)\right] . \tag{3}
\end{align*}
$$

Herc if $\Theta=\sum\left[c_{1}\left|c_{2}\right| \cdots \mid c_{s+1}\right]$, then $[c \mid \Theta]$ denotes the sum $\sum\left[c\left|c_{1}\right| \cdots \mid c_{s+1}\right]$.
To give a more clear picture about the inductive formula (3) we explicitly write it out for the cases $s=1$ and $s=2$. For $s=1$, given $a \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right) \in \bar{B}(\Lambda)_{1} \otimes(\bar{\Omega})^{2}$, let $a \gamma_{p}=\sum_{i} \gamma_{\lambda p} a_{\lambda}$ and let $a_{\lambda} \gamma_{q}=\sum_{j} \gamma_{j q \lambda} b_{j}$ with $\gamma_{\lambda p}, \gamma_{j q \lambda} \in\left\{\gamma_{i}\right\}_{i \geq 0}$ and $a_{\lambda}, b_{j} \in \Lambda$. Then

$$
g_{2}\left([a] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)\right)=\left[a\left|\gamma_{p}\right| \gamma_{q}\right]+\sum_{\lambda}\left[\gamma_{\lambda p}\left|\sigma_{\lambda}\right| \gamma_{q}\right]+\sum_{\lambda, j}\left[\gamma_{\lambda p} \mid \gamma_{j q \lambda} \lambda b_{j}\right] .
$$

For $s=2$, given $\left[a_{1} \mid a_{2}\right] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right) \in \bar{B}(\Lambda)_{2} \otimes(\bar{\Omega})^{2}$, let

$$
\begin{aligned}
a_{2} \gamma_{p}=\sum_{i} \gamma_{\lambda p} a_{\lambda}, & a_{\lambda} \gamma_{q}=\sum_{j} \gamma_{j q \lambda} b_{j}, \\
a_{1} \gamma_{\lambda p}=\sum_{v} \gamma_{v \lambda p} c_{v}, & c_{v} \gamma_{j q \lambda}=\sum_{\mu} \gamma_{\mu v j \lambda \lambda} d_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\bar{g}_{2}\left(\left[a_{1} \mid a_{2}\right] \otimes\left(\bar{\gamma}_{p} \otimes \bar{\gamma}_{q}\right)\right)= & {\left[a_{1}\left|a_{2}\right| \gamma_{p} \mid \gamma_{q}\right]+\sum_{\lambda}\left[a_{1}\left|\gamma_{\lambda p}\right| a_{\lambda} \mid \gamma_{q}\right] } \\
& +\sum_{\lambda, j}\left[a_{1}\left|\gamma_{\lambda p}\right| \gamma_{j q \lambda} \mid b_{j}\right]+\sum_{\lambda, v}\left[\gamma_{: \lambda p}\left|c_{v}\right| a_{\lambda} \mid \gamma_{q}\right] \\
& +\sum_{\text {,,i,v}}\left[\gamma_{v \lambda p}\left|c_{v}\right| \gamma_{j q \lambda} \mid b_{j}\right]+\sum_{j, \lambda, \mu, v}\left[\gamma_{v \lambda p}\left|\gamma_{\mu v j q \lambda}\right| d_{\mu} \mid b_{j}\right] .
\end{aligned}
$$

Proposition 2.4. The maps $f_{1}: F\left(\Lambda^{*}\right) \otimes \bar{\Omega}^{*} \rightarrow F^{(1)} / F^{(2)}$ and $g_{2}: F^{(2)} / F^{(3)} \rightarrow$ $F\left(\Lambda^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}$ with their \mathbb{Z}_{2}-duals \vec{f}_{1} and \bar{g}_{2} defined by (2) and (3) are chain equivalences.

Proof. It suffices to show that $\bar{f}_{1}: \bar{B}^{(1)} / \bar{B}^{(0)} \rightarrow \bar{B}(\Lambda) \otimes \bar{\Omega}$ and $g_{2}: \bar{B}(\Lambda) \otimes(\bar{\Omega})^{2} \rightarrow$ $\bar{B}^{(2)} / \bar{B}^{(1)}$ are chain equivalences. Consider Adams free Λ-resolutions

$$
C^{(p)}=\Lambda \otimes \bar{B}^{p}+\Gamma \otimes \bar{B}^{(p-1)} ; \Gamma \otimes \bar{B}^{(p-1)} \cong \Lambda \otimes\left(\bar{B}^{(p)} / \bar{B}^{(p-1)}\right)
$$

and the bar resolutions $\Lambda \otimes \bar{B}(\Lambda) \otimes(\bar{\Omega})^{p}$ of $(\bar{\Omega})^{p}$. It is not difficult (although tedious) to verify that

$$
1_{A} \otimes \bar{f}_{1}: C^{(1)} \rightarrow \Lambda \otimes \bar{B}(\Lambda) \otimes \bar{\Omega} \quad \text { and } \quad 1_{\Lambda} \otimes \bar{g}_{2}: \Lambda \otimes \bar{B}(\Lambda) \otimes(\bar{\Omega})^{2} \rightarrow C^{(2)}
$$

are chain maps over Λ and induce isomorphisms in homology. Thus both $1_{\Lambda} \otimes f_{1}$ and $1_{1} \otimes \bar{g}_{2}$ are Λ-chain equivalences. So

$$
f_{1}=1_{z_{2}} \otimes_{A} 1_{A} \otimes f_{1} \quad \text { and } \quad \bar{g}_{2}=1_{\mu_{2}} \otimes_{A} 1_{A} \otimes \bar{g}_{2}
$$

are chain equivalences.

We conclude this section by summarizing some properties of the map g_{2} which follow immediately from formula (3).

We assume $\bar{\Lambda}$ is firite dimensional over \mathbb{Z}_{2}. Let d be the largest integer for which there are non-zero elements $a \in \bar{\Lambda}$ such that $|a|=d$. Let $\left\{v_{\theta}\right\}$ be a \mathbb{Z}_{2}-base for $\bar{\Gamma}$ such that $\left\{\gamma_{i}\right\}_{i \leq 1} \subset\left\{\theta_{v}\right\}$ and let $\left\{\theta_{v}^{*}\right\}$ be its dual base for $\bar{\Gamma}^{*}$. Note that $\bar{\Omega}^{*} \subset \bar{\Gamma}^{*}$. In the lemma below elements α_{i} of a non-zero cochain $\left[\alpha_{1}|\cdots| \alpha_{s}\right]$ in $F\left(\Gamma^{*}\right)$ (or $F^{(p)} / F^{(p+1)}$) or non-zero elements in $\bar{\Omega}^{*}$ will be basis elements in $\left\{\epsilon_{v}^{*}\right\}$. Let $i^{*}: \bar{\Gamma}^{*} \rightarrow \bar{\Lambda}^{*}$ be the \mathbb{Z}_{2}-dual of the inclusion $i: \bar{\Lambda} \rightarrow \bar{\Gamma}$. We write

$$
\left[\alpha_{1}|\cdots| \alpha_{s}\right] \otimes(x \otimes y) \in g_{2}\left(\left[\beta_{1}|\cdots| \beta_{s+2}\right]\right)
$$

if $\left[\alpha_{1}|\cdots| \alpha_{s}\right] \otimes(x \otimes y)$ appears in the sum $g_{2}\left(\left[\beta_{1}|\cdots| \beta_{s+2}\right]\right)$.
Lemma 2.5. (i) Suppose $\left[\alpha_{1}|\cdots| \alpha_{s}\left|\alpha_{s+1}\right| \alpha_{s+2}\right]$ is a non-zero element in $F^{(2)} / F^{(1)}$ such that $\alpha_{s+2} \in \bar{\Omega}^{*}$ and α_{s+1} annihilates $\bar{\Lambda}$. Then

$$
g_{2}\left(\left[\alpha_{1}|\cdots| \alpha_{s}\left|\alpha_{s+1}\right| \alpha_{s+2}\right]\right)= \begin{cases}0 & \left(\alpha_{s+1} \notin \bar{\Omega}^{*}\right) \\ {\left[i^{*}\left(\alpha_{1}\right)|\cdots| i^{*}\left(n_{s}\right)\right] \otimes\left(\alpha_{s+1} \otimes \alpha_{s+2}\right)} & \left(\alpha_{s+1} \in \bar{\Omega}^{*}\right) .\end{cases}
$$

(ii) Given $\left[\alpha_{1}|\cdots| \alpha_{\mathrm{i}}\right] \in F\left(\Lambda^{*}\right)^{s, t}$ and $x, y, z \in \bar{\Omega}^{*}$, let $\left[\beta_{1}|\cdots| \beta_{s+1}\right]$ be an element in $F^{(1)} / F^{(2)}$ such that

$$
\left[\beta_{1}|\cdots| \beta_{s+1} \mid z\right] \in\left(F^{(2)} / F^{(3)}\right)^{s+2, t+x+z} .
$$

If $z \neq y$, then

$$
\left[\alpha_{1}|\cdots| \alpha_{s}\right] \otimes(x \otimes y) \notin g_{z}\left(\left[\beta_{1}|\cdots| \beta_{s+1} \mid z\right]\right)
$$

If $z=y,|x|>s d-t$ and $\sum_{j-1}^{s+1}\left|\beta_{j}\right| \leq s d$, then

$$
\left[\alpha_{1}|\cdots| \alpha_{s}\right] \otimes(x \otimes y) \notin g_{2}\left(\left[\beta_{1}|\cdots| \beta_{s+1} \mid z\right]\right)
$$

3. Some calculations in the Steenred algebra which arise when using the speciral sequence of Adams

Let A_{l} be the sub-Hopf-algcbra of the Steenı $J d$ algebra A generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots, \mathrm{Sq}^{2^{l}}$ and let $\Omega=A / A \cdot \bar{A}_{l}$. In this section we cietermine the structure of Ω^{*} (Proposition 3.1) using Milnor's description of A and prove that \bar{A}_{I-2} acts trivially on certain A_{l}-module generators of $(\bar{\Omega})^{2}$ (Proposition 3.4).

We begin by recalling from Milnor [11] that

$$
A^{*}=\mathbb{Z}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]
$$

and

$$
A_{l}^{*}=\mathbb{Z}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]^{\prime}\left(\xi_{1}^{2^{\prime+1}}, \xi_{2}^{2^{\prime}}, \ldots, \xi_{1+1}^{2}, \xi_{1+2}, \ldots\right)
$$

with coproduct given by

$$
\Delta\left(\xi_{k}\right)=\sum_{j=0}^{k} \xi_{k=j}^{2^{j}} \otimes \xi_{j} \quad\left(\xi_{0}=1\right)
$$

where $\operatorname{deg}\left(\xi_{i}\right)=2^{i}-1$. Let $\chi: A^{*} \rightarrow A^{*}$ be the canonical anti-automorphism of A^{*} [12] and let $\zeta_{i}=\chi\left(\xi_{i}\right)$. From the definition of χ we have

$$
\begin{equation*}
\zeta_{1}^{n}=\xi_{1}^{n}, \quad \zeta_{k}=\xi_{k}+\sum_{j=1}^{k-1} \zeta_{k-j}^{2 J} \xi_{j} \quad(k \geq 2) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(\zeta_{k}\right)=\sum_{j=0}^{k} \zeta_{j} \otimes \zeta_{k-j}^{2^{j}} \tag{5}
\end{equation*}
$$

Then $A^{*}=\mathbb{Z}_{2}\left[\zeta_{1}, \zeta_{2}, \ldots\right]$ and

$$
\begin{equation*}
A_{l}^{*}=\mathbb{Z}_{2}\left[\zeta_{1}, \zeta_{2}, \ldots\right] /\left(\zeta_{1}^{2^{2+1}}, \zeta_{2}^{2^{\prime}}, \ldots, \zeta_{l+1}^{2}, \zeta_{l+2}, \ldots\right) \tag{6}
\end{equation*}
$$

Let $\Omega=A / A \cdot \bar{A}_{l}$. Then $\Omega^{*} \subset A^{*}$.
Proposition 3.1. $\Omega^{*}=\mathbb{Z}_{2}\left[\zeta_{1}^{2^{\prime \prime 1}}, \zeta_{2}^{2^{2}}, \ldots, \zeta_{l+1}^{2}, \zeta_{l+2}, \ldots\right]$.
This generalizes a result of F. Peterson in [13] where he proves Proposition 3.1 for $l=1$. We shall follow Peterson's method to prove 3.1 and we begin by recalling a result of his in [13].
A acts on A^{*} from the left and from the right by transposing. More precisely, given $a \in A$ and $m^{*} \in \lambda^{*}$, define $a m^{*}$ and $m^{*} a$ by $\left\langle a m^{*}, b\right\rangle=\left\langle m^{*}, b a\right\rangle$ and $\left\langle m^{*} a, b\right\rangle=$ $\left\langle m^{*}, a b\right\rangle$. The operations of A lower the degrees.

Lemma 3.2 (Peterson). Under the above A-action A^{*} is a left and a right algebra over A, that is, Cartan's formula hold's and

$$
\mathrm{Sq}\left(\xi_{k}\right)=\xi_{k}+\xi_{k-1}^{2}, \quad\left(\xi_{k}\right) \mathrm{Sq}=\xi_{k}+\xi_{k-1}
$$

where $\mathrm{Sq}=\sum_{i=0}^{\infty} \mathrm{Sq}^{i}$.
It follows from Cartan's formula that
for all $x \in A^{*}$.
Lemma 3.3. (i) $\mathrm{Sq}^{2^{k}} \zeta_{k+2}=0$ for $\lambda \leq k$.
(ii) $\mathrm{Sq}^{2^{2} \zeta_{k}^{2+2}}=0$ for $0 \leq \lambda \leq 1$ and $1 こ k \leq l+1$

Proof. We first jeduce (ii) from (i). We may assume $\lambda \geq l+2-k$. Then

$$
\mathrm{Sq}^{2^{i} \zeta_{k}^{2+2 k}}=\left(\mathrm{Sq}^{2^{i+k} 1 \cdot 2} \zeta_{k}\right)^{2^{\prime+2 k}}=0
$$

by (i) since $\lambda+k-l-2 \leq k-2$.
We prove (i) by induction on k. If $k=0$, then $\lambda=0$ and $\left.\zeta_{k+2}=\zeta_{2}=\xi_{2}\right\urcorner \xi_{1}^{3}$ (by (4)). We have

$$
\mathrm{Sq}^{1} \zeta_{2}=\mathrm{Sq}^{1} \xi_{2}+\mathrm{Sq}^{1} \xi_{1}^{3}=\xi_{1}^{2}+\xi_{1}^{2}=0 .
$$

Thus the result is true for $k=0$. Suppose $k>0$ and suppose the result is true for $k^{\prime}<k$. By (4)

$$
\zeta_{k+2}=\xi_{k+2}+\sum_{j-1}^{k+1} \zeta_{k+2-j}^{2 \prime} \xi_{j}
$$

If $\lambda=0$, then

$$
\begin{aligned}
\mathrm{Sq}^{1} \zeta_{k+2} & =\mathrm{Sq}^{1} \xi_{k+2}+\sum_{j=1}^{k+1}\left(\mathrm{Sq}^{1} \zeta_{k+2-j}^{2^{\prime}}\right) \xi_{j}+\sum_{j=1}^{k+1} \zeta_{k+2-j}^{2 \prime} \mathrm{Sq}^{1} \xi_{j} \\
& =\xi_{k+1}^{2}+\sum_{j-1}^{k+1} \zeta_{k+2-j}^{2^{\prime}} \xi_{j-1}^{2} \\
& =\xi_{k+1}^{2}+\sum_{i=1}^{k} \zeta_{k+1-i}^{2+1} \xi_{i}^{2}+\zeta_{k+1}^{2} \\
& =\left(\xi_{k+1}+\zeta_{k+1}+\sum_{i-1}^{k} \zeta_{k+1-i}^{2^{\prime}} \xi_{i}\right)^{2}=0 \quad \text { (by (4)). }
\end{aligned}
$$

If $\lambda \geq 1$, then

$$
\begin{aligned}
\mathrm{Sq}^{2^{\prime}} \zeta_{k+2} & =\mathrm{Sq}^{2^{\prime}} \xi_{k+2}+\sum_{j-1}^{k+1} \mathrm{Sq}^{2^{i}}\left(\zeta_{k+2-j}^{2^{\prime}} \xi_{j}\right) \\
& =0+\sum_{j-1}^{k+1}\left(\mathrm{Sq}^{2^{i}-1} \zeta_{k+2-j}^{2}\right) \xi_{j-1}^{2}+\sum_{j-1}^{k+1}\left(\mathrm{Sq}^{2^{i}} \zeta_{k+2-j}^{2^{j}}\right) \xi_{j} \\
& =\sum_{j}^{k+1}\left(\mathrm{Sq}^{2^{\prime}-1} \mathrm{Sq}^{2^{2}} \zeta_{k+2-j}^{2^{\prime}}\right) \xi_{j-1}^{2}+\sum_{j=1}^{\lambda}\left(\mathrm{Sq}^{2^{i}} \zeta_{k+2-j}^{2^{\prime}}\right) \xi_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{\lambda-1}\left(\mathrm{Sq}^{2^{\lambda-1}-1} \mathrm{Sq}^{2^{\lambda-1}} \zeta_{k+2-j}^{2^{j}}\right) \xi_{j-1}^{2}+\sum_{j=1}^{\lambda}\left(\mathrm{Sq}^{2^{\lambda}} \zeta_{k+2-j}^{j^{j}}\right) \xi_{j} \\
& =\sum_{j=1}^{\lambda-1} \mathrm{Sq}^{2^{\lambda-1}-1}\left(\mathrm{Sq}^{2^{\lambda-1-j}} \zeta_{k+2-j}\right)^{2^{j}} \xi_{j-1}^{-}+\sum_{j=1}^{\lambda}\left(\mathrm{Sq}^{2^{\lambda-j}} \zeta_{k+2-j}\right)^{2^{j}} \xi_{j}
\end{aligned}
$$

By inductive hypothesis $\mathrm{Sq}^{2^{\lambda-1-j}} \zeta_{k+2-j}=\mathrm{Sq}^{2 \mathrm{q}^{2-j}} \zeta_{k+2-j}=0$ since $\lambda-1-j<\lambda-j \leq k-j<$ k. So $\mathrm{Sq}^{2^{i}} \zeta_{k+2}=0$. This proves Lemma 3.3.

Proof of Proposition 3.1. For $a \in A$ let $R(a): A \rightarrow A$ and $L(a): A^{*} \rightarrow A^{*}$ be the maps defined by $R(a) b=b a$ and $L(a) b^{*}=a b^{*}$. Consider the exact sequence

$$
A \underbrace{\oplus \cdots \oplus}_{l+1} A \xrightarrow{R\left(\mathrm{Sq}^{\prime}\right) \oplus \cdots \oplus R\left(\mathrm{Sq}^{2^{\prime}}\right)} A \xrightarrow{\pi}\left(A / A \cdot A_{l}\right)=\Omega \longrightarrow 0 .
$$

Dualizing this we get an exact sequence

$$
A^{*} \underbrace{\oplus \cdots \oplus}_{l+1} A^{*} \stackrel{L\left(\mathrm{Sq}^{1}\right) \oplus \cdots \oplus L\left(\mathrm{Sq}^{2^{\prime}}\right)}{\longleftarrow} A^{*} \pi^{*} \Omega^{*} \longleftarrow 0 .
$$

By Lemma 3.3 and Cartan's formula we see

$$
\mathbb{Z}_{2}\left[\zeta_{1}^{2^{\prime+1}}, \zeta_{2}^{2^{\prime}}, \ldots, \zeta_{l+1}^{2}, \zeta_{l+2}, \ldots\right] \subset \operatorname{ker} \pi^{*}=\Omega^{*}
$$

But it is well known [9] that

$$
\left\{\overline{\mathrm{Sq}\left(r_{1}, r_{2}, \ldots\right)} \mid r_{i}=\text { a multiple of } 2^{l+2-i} \text { for } 0 \leq i \leq l+2, r_{l+j} \geq 0 \text { for } j \geq 2\right\}
$$

is a \mathbb{Z}_{2}-base for Ω where $\operatorname{Sq}\left(r_{1}, r_{2}, \ldots\right)$ is the Milnor basis element in A dual to $\xi_{1}^{r_{1}} \xi_{2}^{r_{2}} \ldots$. Since $\operatorname{deg}\left(\xi_{i}\right)=\operatorname{deg}\left(\zeta_{i}\right)$, it follows that the vector spaces Ω^{*} and $\mathbb{Z}_{2}\left[\zeta_{1}^{2^{++1}}, \zeta_{2}^{2^{1}}, \ldots, \zeta_{l+1}^{2}, \zeta_{l+2}, \ldots\right]$ have the same finite dimension in each degree and so they are equal. This proves Proposition 3.1.

We next proceed to show that \bar{A}_{l-2} acts trivially on certain A_{l}-module generators of $(\bar{\Omega})^{2}$. We recall again that the Milnor basis for A is $\left\{\operatorname{Sq}\left(r_{1}, r_{2}, \ldots\right)\right\}$ which is dual to the monomial basis for the polynomial algebra $A^{*}=\mathbb{Z}_{2}\left[\xi_{1}, \xi_{2}, \ldots\right]$. Let $\chi: A \rightarrow A$ be the canonical anti-automorphism of A. Then $\left\{\chi \operatorname{Sq}\left(r_{1}, r_{2}, \ldots\right)\right\}$ is the basis for A, dual to the monomial basis for the polynomial algebra $A^{*}=\mathbb{Z}_{2}\left[\zeta_{1}, \zeta_{2}, \ldots\right]$. By Proposition 3.1 the set

$$
\begin{equation*}
\bar{B}=\left\{\overline{\chi \operatorname{Sq}\left(r_{1}, r_{2}, \ldots\right)} \mid r_{i}=k_{i} 2^{l-2-i} \text { for } 0 \leq i \leq l+2, r_{l+j} \geq 0 \text { for } j \geq 2\right\} \tag{7}
\end{equation*}
$$

is a \mathbb{Z}_{2}-base for Ω. We write $\operatorname{Sq}\left(r_{2}, r_{2}, \ldots, r_{k}\right)$ for $\operatorname{Sq}\left(r_{1}, r_{2}, \ldots\right)$ if $r_{k+j}=0$ for $j \geq 1$ and simply write $\chi\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ for $\chi \operatorname{Sq}\left(r_{1}, r_{2}, \ldots, r_{k}\right)$.

Proposition 3.4. (i) $\overline{\chi\left(i 2^{I+1}\right)} \otimes \overline{\chi\left(j 2^{I+1}\right)}$ are A_{l}-module generators of $(\bar{\Omega})^{2}$ where $i>0, j>0$.
(ii) \bar{A}_{l-2} acts trivially on these generators $(l \geq 2)$.

Proof. By Lemma 3.3(ii) a nd Cartan's formula, $\mathrm{Sq}^{2^{\lambda}} \zeta_{1}^{2^{I+1}}=0$ for $0 \leq \lambda \leq l$. Since $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \ldots, \mathrm{Sq}^{2^{\prime}}$ generate A_{l} it follows that $a \zeta_{1}^{i 2^{i+1}}=0$ for $a \in \bar{A}_{l}$; so $\overline{\chi\left(i 2^{1+1}\right)}$ are \boldsymbol{A}_{1}-module generators of $\bar{\Omega}$. Then formula (1) in Section 2 shows that $\overline{\chi\left(i 2^{1+1}\right)} \otimes$ $\overline{\chi\left(j 2^{1+1}\right)}$ are A_{l}-module generators of $(\bar{\Omega})^{2}$. This proves (i).

To prove (ii) we first show that \bar{A}_{l-1} acts trivially on $\overline{\chi\left(j 2^{1+1}\right)}$, that is

$$
\begin{equation*}
a \overline{\chi\left(j 2^{l+1}\right)}=0 \quad \text { for } a \in \bar{A}_{i-1} \tag{*}
\end{equation*}
$$

It suffices to show that for any monomial

$$
m=\zeta_{r_{1}}^{k_{1} 2^{1+2} r_{1}} \zeta_{r_{2}}^{k_{2} 2^{1+2} r_{:}} \cdots \zeta_{r_{n}}^{k_{2} n^{1+2} r_{n}}
$$

in $\Omega^{*}=\mathbb{Z}_{2}\left[\zeta_{1}^{2^{1+1}}, \zeta_{2}^{2^{\prime}}, \ldots, \zeta_{l+1}^{2}, \zeta_{l+2}, \ldots\right]$ with $|m|>0,1 \leq r_{1}<\cdots<r_{n}$ (if $r_{\alpha} \geq l+2$, then interpret $2^{l+2-r_{\text {I }}}$ as 1), if $\Delta(m)$ has a term of the form $\eta \otimes \zeta_{1}^{2^{2^{\prime+1}}}$ with $|\eta|>0$, then η projects to zero under $\bar{A}^{*} \rightarrow \bar{A}_{l-1}^{*}$. If $r_{\alpha} \leq l+1$, then
if $r_{\alpha} \geq l+2$, then

$$
\Delta\left(\zeta_{r_{a}}^{k_{u}}\right)=\left(\zeta_{r_{u}} \otimes 1+1 \otimes \zeta_{r_{a}}+\sum_{p-2}^{r_{a}-1} \zeta_{r_{u}-p} \otimes \zeta_{p}^{2_{u}-p}+\zeta_{r_{a}-1} \otimes \zeta_{1}^{2^{r_{a}}}\right)^{k_{a}}
$$

It follows that if $x \otimes \zeta_{1}^{G} \in \Delta\left(\zeta_{r_{a}}^{k_{a} 2^{\prime \cdot} \cdot{ }^{\prime}{ }^{a}}\right.$), then q is a multiple of 2^{1+1} (we allow $q=0$) and x is of the form

$$
\zeta_{1}^{\lambda_{1}^{\lambda^{\prime}} \zeta_{t_{2}^{\prime}}^{\lambda_{2} 2^{i+1}}{ }^{t_{2}} \cdots \zeta_{t_{p}, 2^{2}}^{\lambda^{2+1}} i_{r}}
$$

with $2 \leq t_{2}<\cdots<2_{p}$ (if $t_{\alpha} \geq l+1$, then $2^{l+1-t_{\alpha}} \equiv 1$). This implies

$$
\eta=\zeta_{1}^{u_{1} 2^{\prime}} \zeta_{s_{2}}^{u_{2} 2^{\prime+1}} \because \cdots \zeta_{s_{q}}^{u_{q} q^{2+1}} \text { ه }
$$

with $2 \leq s_{2}<\cdots<s_{q}$ (if $s_{\alpha} \geq l+1$, then $2^{l+1-s_{a}} \equiv 1$). Since $|\eta|>0, u_{\alpha}>0$ for some α. From (6) (with $/$ replaced by $l-1$) we see η projects to zero in \bar{A}_{l-1}^{*}. This proves (*).

Similarly,

$$
\begin{equation*}
a \overline{\chi\left(i 2^{l+1}\right)}=a \chi\left(2 i 2^{l}\right)=0 \quad \text { in } \bar{\Omega}^{\prime}=\overline{A / A \cdot \bar{A}_{l-1}} \text { for } a \in \bar{A}_{l-2} \tag{**}
\end{equation*}
$$

Let $\left\{\gamma_{\alpha}\right\}_{\mu \geq 0}\left(\left\{\gamma_{\beta}^{\prime}\right\}_{\beta \geq 0}\right)$ be a right A_{l}-base $\left(A_{l-1}\right.$-base) for A such that $\bar{B}=\left\{\bar{\gamma}_{\alpha}\right\}_{\alpha \geq 0}$ is the \mathbb{Z}_{2}-base for Ω in (7). Given $a \in \bar{A}_{l-2}$. Let $a \chi\left(i 2^{l+1}\right)=\sum_{\lambda} \gamma_{j(\lambda)}^{\prime} a_{j(\lambda)}$ with
$\gamma_{j(\lambda)}^{\prime} \in\left\{\gamma_{\beta}^{\prime}\right\}_{\beta \geq 0}$ and $a_{j(\lambda)} \in A_{l-1}$. The result (**) implies $a_{j(\lambda)} \in \bar{A}_{I-1}$ for each λ (since $i>0$). Let

$$
\gamma_{j(\lambda)}^{\prime}=\sum_{v} \gamma_{j(\lambda, v)} b_{j(\lambda, v)}
$$

with $\gamma_{j(\lambda, v)} \in\left\{\gamma_{\alpha}\right\}_{\alpha \geq 0}$ and $b_{j(\lambda, v)} \equiv A_{l}$. Then

$$
a \chi\left(i 2^{l+1}\right)=\sum_{\lambda, v} \gamma_{j(\lambda, v)} b_{j(\lambda, v)} a_{j(\lambda)}
$$

Since $a_{j(\lambda)} \in \bar{A}_{l-1}$, from formula (1) in Section 2 and the result (*) above we see

$$
\left.\overline{a\left(\chi\left(i 2^{l+1}\right)\right.} \otimes \overline{\chi\left(j 2^{\prime+1}\right)}\right)=\sum_{\lambda, v} \bar{\gamma}_{j(\lambda, v)} \otimes b_{j(\lambda, v)} a_{j(\lambda)} \overline{\chi\left(j 2^{\prime+1}\right)}=0 .
$$

This completes the proof of Proposition 3.4.

We conclude this section with the following corollary to Proposition 3.4 which is rather clear. In stating the corollary we note that if $a \in A_{l}$ with $|a| \leq 2^{l-1}-1$, then $a \in A_{l-2}$, and so $\operatorname{Ext}_{A_{l-2}}^{s_{i},}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right) \equiv \operatorname{Ext}_{A_{l}}^{s_{s} t}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ for $t-s \leq 2^{l-1}-2$.

Corollary 3.5. (i) If $\Sigma_{v}\left[\alpha_{\nu_{1}}|\cdots| \alpha_{v_{s}}\right]$ is a cocycle in $F\left(A_{l}^{*}\right)$ representing a non-zero
 $\left(\zeta_{1}^{i 2^{2+1}} \otimes \zeta_{1}^{j 2^{\prime+1}}\right)$ is a cocycle in $F\left(A_{l}^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}$ representing a non-zero class in $\left.\operatorname{Ext}_{A_{1}}^{s+2, *}(\bar{\Omega})^{2}, \mathbb{Z}_{2}\right)$ where $i>0, j>0$.
(ii) Let $R=\sum_{v}\left[\alpha_{1}|\cdots| \alpha_{v_{s}}\right] \otimes\left(\zeta_{1}^{2^{l+1}} \otimes \zeta_{1}^{2^{l+1}}\right)$ be as in (i) and let $R_{1}=$ $\sum_{\mu}\left[\beta_{\mu_{1}}|\cdots| \beta_{\mu_{s}}\right] \otimes\left(\eta_{u_{s+1}} \otimes \eta_{u_{s+2}}\right)$ be another cocyrle in $F\left(A_{l}^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}$ such that either $\eta_{\mu_{s+1}} \otimes \eta_{\mu_{s+2}} \neq \zeta_{1}^{i 2^{i+1}} \otimes \zeta_{1}^{2^{2+1}}$ for any μ or R_{1} has a subsum of the form $\left(\sum_{\lambda}\left[\beta_{\lambda_{1}}\left|\beta_{\lambda_{2}}\right| \cdots \mid \beta_{\lambda_{s}}\right]\right) \otimes\left(\zeta_{1}^{p 2^{\prime+1}} \otimes \zeta_{1}^{q 2^{\prime+1}}\right)$ such that $\left|\hat{\beta}_{\Lambda_{1}}\right| \leq 2^{1-1}-1$ for all λ_{k}, $(p, q) \neq(i, j)$ and $\sum_{\lambda}\left[\beta_{\lambda_{1}}\left|\beta_{\lambda_{2}} \cdots\right| \beta_{\lambda_{5}}\right]$ is a non-boundary cocycle. Then $\{R\} \neq\left\{R_{1}\right\}$ in $\left.\operatorname{Ext}_{A_{l}}^{s+2, *}(\bar{\Omega})^{2}, \mathbb{Z}_{2}\right)$.

4. Proof of Theorem 1.1

Let α, s, t, i, d_{i+1} and m be as in Theorem 1.1. These notations will be fixed throughout this section. We recall that d_{i+1} is the largest integer for which there are non-zero elements $a \in A_{i+1}$ such that $|a|=d_{i+1}$. From (6) of Section 3 we see

$$
d_{i+1}=\left|\chi\left(2^{i+2}-1,2^{i+1}-1, \ldots, 3,1\right)\right|=i 2^{i+3}+i+6 .
$$

By assumption $2^{m-1}>s d_{i+1}-t$ and $t-s \leq 2^{i}-2$. Since $t-s>0$ and $\alpha \neq 0$, Adams vanishing theorem on $\operatorname{Ext}_{A}^{* *}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ [3] implies $t+3 \geq 3 s$. From these one easily verifies that
(a) 2^{m+1} is a positive multiple of 2^{i+2},
(b) $t+2^{m+1}>\left(2^{i+2}-1\right)(s+1)$, and
(c) $d_{i+1}>\frac{3}{2}\left(2^{i}-2+1\right) \geq t$.

To prove Theorem 1.1 we apply Theorem 2.1 by taking $\Gamma=A$ and $\Lambda=A_{i+1}$. By Proposition 3.1

$$
\Omega^{*}=\left(A / A \cdot \bar{A}_{i+1}\right)^{*}=\mathbb{Z}_{2}\left[\zeta_{1}^{2^{i+2}}, \zeta_{2}^{2^{i+1}}, \ldots, \zeta_{i+2}^{2}, \zeta_{i+3}, \ldots\right] .
$$

So $B=\left\{\chi\left(r_{1}, r_{2}, \ldots\right) \mid r_{j}=k_{j} 2^{i+3-j}\right.$ for $j \leq i+2$ and $r_{i+k} \geq 0$ for $\left.k \geq 3\right\}$ is a right A_{i+1}-base for A. Let $i^{*}: A^{*} \rightarrow A_{i+1}^{*}$ be dual to the inclusion $i: A_{i+1} \rightarrow A$ and let $\sigma: A_{i+1}^{*} \rightarrow A^{*}$ be defined by $\sigma\left(\zeta_{1}^{r_{1}} \zeta_{2}^{r_{2}} \cdots\right)=\zeta_{1}^{r_{1}} \zeta_{2}^{r_{2}} \cdots$. Then $i^{*} \sigma=1_{A_{i+1}^{*}}$. By Proposition 2.4 there is a chain equivalence

$$
f_{1}: F\left(A_{i+1}^{*}\right) \otimes \bar{\Omega}^{*} \rightarrow F^{(1)} / F^{(2)}
$$

which is given by

$$
\begin{equation*}
f_{1}\left(\left[\alpha_{1}|\cdots| \alpha_{s}\right] \otimes \alpha_{s+1}\right)=\left[\sigma\left(\alpha_{1}\right)|\cdots| \sigma\left(\alpha_{s}\right) \mid \alpha_{s+1}\right] \tag{8}
\end{equation*}
$$

This formula is obtained by dualizing (2) in Section 2. With respect to the A_{t+1}-base B for A above we define

$$
\bar{g}_{2}: \bar{B}\left(A_{i+1}\right) \otimes(\bar{\Omega})^{2} \rightarrow \bar{B}^{(2)} / \bar{B}^{(1)}
$$

by formula (3) in Section 2 and then take its \mathbb{Z}_{2}-dual

$$
g_{2}: F^{(2)} / F^{(3)} \rightarrow F\left(A_{i+1}^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}
$$

By Proposition 2.4, g_{2} is a chain equivalence. It is not easy to write a formula for g_{2}. All we need about g_{2} for what follows is Lemma 2.5 , and we recall that there is a convention in the lemma which for the present case is the foliowing. When we
 α, will be nonomials in the variables ζ_{k}.

We proceed to prove Theorem 1.1. If $s=1$, then $\alpha=h_{k}$ for some k. Adams [2] has shown $h_{k} h_{j}^{2} \neq 0$ if $j>k+2$. Since

$$
2^{m-1}>s d_{i+1}-t=d_{i+1}-t \geq d_{i+1}-\frac{3}{2}\left(2^{i}-2+1\right)
$$

(by (c)) it follows that $m>k+2$. So $h_{k} h_{m}^{2} \neq 0$. We may thus assume $s \geq 2$.
Let $\Sigma_{;}\left[\alpha_{i_{1}}|\cdots| \alpha_{i_{1}}\right] \in F\left(A^{*}\right)^{5, t}$ be a cocycle representing the class α. Then

$$
R=\sum_{i}\left[\alpha_{\lambda_{1}}|\cdots| \alpha_{\lambda_{3}}\left|\zeta_{1}^{2^{m}}\right| \zeta_{1}^{2^{m}}\right] \in F\left(A^{*}\right)^{s+2, t+2^{m+1}}
$$

is a cocycle representing αh_{m}^{2}. By (a), $\zeta_{1}^{2^{m}} \in \bar{\Omega}^{*}$. Since $2^{i}-2 \geq t-s$ and $\left|\alpha_{\lambda}\right| \geq 1$, it follows that $2^{i}-1 \geq\left|\alpha_{i,}\right|$ for all λ_{j}; so $\alpha_{\lambda,} \in \sigma\left(\bar{A}_{i+1}^{*}\right)$. Therefore R lies in $F^{(2)}$ and its image \bar{R} in $F^{(2)} / F^{(3)}$ is non-zero. By Lemma $2.5(\mathrm{i})$ the cocycle $g_{2}(\bar{R}) \in$ $F\left(A_{1+1}^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}$ is given by

$$
\begin{equation*}
g_{2}(\bar{R})=\sum_{i}\left[i^{*}\left(\alpha_{\lambda_{1}}\right)|\cdots| i^{*}\left(\alpha_{\lambda_{s}}\right)\right] \otimes\left(\zeta_{1}^{2^{m}} \otimes \zeta_{1}^{2^{m}}\right) \tag{9}
\end{equation*}
$$

and since $\alpha_{i} \leq 2^{i}-1$, by Corollary 3.5 (ii), it represents a non-zero class : n

$$
E_{1}^{2.5, t+2^{m-1}}=\operatorname{Ext}_{A_{1}, 1}^{s+2, t+2^{m+1}}\left((\bar{\Omega})^{2}, \mathbb{Z}_{2}\right) ;
$$

we denote this class by $\overline{\alpha h_{m}^{2}}$. To complete the proof of Theorem 1.1 it suffices to show that
(d) $d_{1}(x) \neq \overline{\alpha h_{m}^{2}}$ for any x in $E_{1}^{1, s, t+2^{m+1}}=\operatorname{Ext}_{A_{i+1}}^{s+1, t+2^{m+1}}\left(\bar{\Omega}, \mathbb{Z}_{2}\right)$, and
(e) $d_{2}(y) \neq \overline{\alpha h_{m}^{2}}$ for any y in $E_{2}^{0, s+1, t+2^{m+1}} \subset \operatorname{Ext}_{A_{1+1}}^{s+1, r+2^{m+1}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$.

It is well known, by the May spectral sequence [.J], that

$$
\mathrm{Ext}_{A_{i+1}}^{s_{i+1}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)=0 \quad \text { for } \bar{t}>\left(2^{i+2}-1\right) \bar{s}
$$

From (b) we see $\operatorname{Ext}_{A_{i+1}}^{s+1, t+2^{m+1}}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)=0$. This proves (e).
It takes more work to prove (d). We need two lemmas. Let $Z=\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right) \mid z\right]$ be a cochain in $F\left(A^{*}\right)^{s+1, t+2^{m+1}}$ with $\theta_{j} \in \bar{A}_{i+1}^{*}, z \in \bar{\Omega}^{*}$. Suppose $\delta(Z)=$ $\sum_{\lambda}\left[\tau_{\lambda_{1}}|\cdots| \tau_{\lambda_{s+1}} \mid \tau_{\lambda_{s+2}}\right] \neq 0$ where δ is the coboundary homomorphism of $F\left(\dot{A}^{*}\right)$. Since the coproduct $\Delta: A^{*} \rightarrow A^{*} \otimes A^{*}$ maps Ω^{*} to $A^{*} \otimes \Omega^{*}$ it follows that $\tau_{\lambda_{s+2}} \in \bar{\Omega}^{*}$ for all λ; so $\delta(Z) \in F^{(1)}$. Let ${ }_{2} Z=\sum_{\mu}\left[\tau_{\mu_{1}}|\cdots| \tau_{\mu_{s+1}} \mid \tau_{\mu_{s+2}}\right]$ be the subsum of all $\left[\tau_{\mu_{1}}|\cdots| \tau_{\mu_{s+1}} \mid \tau_{\mu_{s+2}}\right]$ such that $\tau_{\mu_{j}}$ annihilates \bar{A}_{i+1} for only one $\mu_{i} \in\left\{\mu_{1}, \ldots, \mu_{s+1}\right\}$. Then ${ }_{2} Z \in F^{(2)}$. Let ${ }_{2} \bar{Z}$ be its image in $F^{(2)} / F^{(3)}$ and consider $g_{2}\left({ }_{2} \bar{Z}\right)$.

Lemma 4.1. (i) If the sum $g_{2}\left({ }_{2} \bar{Z}\right)$ is non-zero and has a term of the form $\left[\eta_{1}|\cdots| \eta_{s}\right] \otimes\left(\zeta_{1}^{p 2^{i+2}} \otimes \zeta_{1}^{q 2^{i+2}}\right)$ with $(p+q) 2^{i+2}=2^{m+1}$ and $p 2^{i+2}>s d_{i+1}-t$, then $\eta_{j}=\sigma\left(\theta_{j}\right)$ for all $j, z=\zeta_{1}^{k 2^{i+2}} \zeta_{2}^{l 2^{i+2}}$ for some k and $l>0$ with $|z|=2^{m+1}$ and $\zeta_{1}^{p^{2 i+2}} \otimes \zeta_{1}^{q 2^{i+2}} \in \Delta\left(\zeta_{1}^{k 2^{i+2}} \zeta_{2}^{12^{i+2}}\right)$.
(ii) Conversely suppose $z=\zeta_{1}^{k 2^{i+2}} \zeta_{2}^{12^{i+2}}$ with $l>0$ and $|z|=2^{m+1}$. Then

$$
\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\right] \otimes\left(\zeta_{1}^{(k+l) 2^{1+3}} \otimes \zeta_{1}^{12^{i+3}}\right) \in g_{2}\left({ }_{2} \bar{Z}\right)
$$

and, if $k=l$,

$$
\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\right] \otimes\left(\zeta_{1}^{2^{m-1}} \otimes \zeta_{1}^{2^{m}+2^{m \cdot 1}}\right) \in g_{2}\left({ }_{2} \bar{Z}\right)
$$

Lemma 4.2. (i) Suppose $\zeta_{1}^{p^{2 i+2}} \otimes \zeta_{1}^{q 2^{i+2}} \in \Delta\left(\zeta_{1}^{k 2^{i+2}} \zeta_{2}^{12^{i+2}}\right)$ and $(k+3 l) 2^{i+2}=2^{m+1}$. If $p \geq q$ or if $p 2^{i+2}=2^{m-1}$ and $q 2^{i+2}=3 \cdot 2^{m-1}$, then $k \geq l$.
(ii) If $k-l>k^{\prime}-l^{\prime}$, then

$$
\zeta_{1}^{(k+1) 2^{i+2}} \otimes \zeta_{1}^{12^{\prime+3}} \oplus \Delta\left(\zeta_{1}^{k^{\prime} 2^{i+2}} \zeta_{2}^{l^{\prime} 2^{i+2}}\right)
$$

Proof of Lemma 4.1. Let $T(\mu)=\left[\tau_{\mu_{1}}|\cdots| \tau_{\mu_{s+1}} \mid \tau_{\mu_{s+2}}\right]$. Then $g_{2}\left({ }_{2} \bar{Z}\right)=\sum_{\mu} g_{2}(\overline{T(\mu)})$. So

$$
\left[\eta_{1}|\cdots| \eta_{s}\right] \otimes\left(\zeta_{1}^{p 2^{i+2}} \otimes \zeta_{1}^{q i^{i^{+2}}}\right) \subseteq g_{2}(\overline{T(v)}) \quad \text { for some } v .
$$

Let v_{j} be the only element in $\left\{v_{1}, \ldots, v_{s+1}\right\}$ such that $\tau_{v_{j}}$ annihilates \bar{A}_{i+1}.
If $j \leq s$, then either

$$
\begin{aligned}
& \tau_{v_{j-1}} \otimes \tau_{v_{j}} \in \Delta\left(\sigma\left(\theta_{j-1}\right)\right), \quad \tau_{v_{k}}=\sigma\left(\theta_{k}\right) \quad \text { for } k \leq j-2, \\
& \tau_{v_{k}}=\sigma\left(\theta_{k-1}\right) \quad \text { for } j+1 \leq k \leq s+1 \quad \text { and } \quad \tau_{v_{s+2}}=z,
\end{aligned}
$$

or

$$
\begin{aligned}
& \tau_{v j} \otimes \tau_{v_{j+1}} \in \Delta\left(\sigma\left(\theta_{j}\right)\right), \quad \tau_{v_{k}}=\sigma\left(\theta_{k}\right) \quad \text { for } k \leq j-1, \\
& \left.\tau_{v_{k}}=\sigma\left(\theta_{k-1}\right) \quad \text { for } j+2 \leq k \leq s+1 \text { (if } j<s\right) \quad \text { and } \quad \tau_{v_{s+2}}=z .
\end{aligned}
$$

Since $\left|\sigma\left(\theta_{k}\right)\right| \leq d_{i+1}$ for all k it follows that both cases imply $\sum_{k=1}^{s+1}\left|\tau_{\nu_{k}}\right| \leq s d_{i+1}$. By Lemma 2.5(ii) this would imply

$$
\left[\eta_{1}|\cdots| \eta_{s}\right] \otimes\left(\zeta_{1}^{p 2^{1+2}} \otimes \zeta_{1}^{q 2^{i+2}}\right) \notin g_{2}(\overline{T(v)}) .
$$

Therefore $j=s+1$. Then either

$$
\begin{aligned}
& \tau_{v_{s}} \otimes \tau_{v_{s-1}} \in \Delta\left(\sigma\left(\theta_{s}\right)\right) \\
& \tau_{v_{k}}=\sigma\left(\theta_{k}\right) \quad \text { for } k \leq s-1 \quad \text { and } \quad \tau_{v_{s+1}}=z
\end{aligned}
$$

or

$$
\tau_{v_{1,1}} \otimes \tau_{v_{s, 2}} \in \Delta(z) \quad \text { and } \quad \tau_{v_{j}}=\sigma\left(\theta_{j}\right) \quad \text { for } 1 \leq j \leq s
$$

Since $g(\bar{T}(\bar{v})) \neq 0$, by Lemma $2.5(\mathrm{i}), \tau_{v_{s+1}} \in \bar{\Omega}^{*}$ and

$$
\begin{aligned}
g(\overline{T(v)}) & =\left[\tau_{v_{1}}|\cdots| \tau_{v_{s}}\right] \otimes\left(\tau_{v_{s+1}} \otimes \tau_{v_{s+2}}\right) \\
& =\left[\eta_{1}|\cdots| \eta_{s}\right] \otimes\left(\zeta_{1}^{p 2^{i+2}} \otimes \zeta_{1}^{q i^{2+2}}\right) .
\end{aligned}
$$

By assumption, $p 2^{i+2}>s d_{i+1}-t$ and $s \geq 2$. By (c), $d_{i+1}>t$. So $p 2^{i+2}>d_{i+1}$ which implies $\tau_{v_{,}} \otimes \tau_{v_{i-1}}=\eta_{s} \otimes \zeta_{1}^{p 2^{2+2}} \oplus \Delta\left(\sigma\left(\theta_{s}\right)\right)$. Hence

$$
\begin{equation*}
\tau_{v_{1,1}} \otimes \tau_{v_{1},:}=\zeta_{1}^{p 2^{1+2}} \otimes \zeta_{1}^{q 2^{\prime+2}} \in \Delta(z) \tag{*}
\end{equation*}
$$

with $z=(p+q) 2^{i+2}=2^{m+1}$ and $\eta_{j}=\tau_{v}=\sigma\left(\theta_{j}\right)$ for $1 \leq j \leq s$.
Since z is a monomial in $\Omega^{*}=\mathbb{Z}_{2}\left[\zeta_{1}^{2^{+2}}, \zeta_{2}^{i^{i+1}}, \ldots, \zeta_{i+2}^{2}, \zeta_{i+3}, \ldots\right]$ it follows from formula (5) in Section 3 that z has to be of the form $\zeta_{1}^{k 2^{i+2}} \zeta_{2}^{1^{\prime 2+1}}$ in order to have (*). We have $|z|=k 2^{i+2}+3 l^{\prime} 2^{i+1}=2^{m+1}$. Since $2^{i+2} \mid 2^{m+1}, l^{\prime}$ is even, say $l^{\prime}=2 l$. So

$$
z=\zeta_{1}^{k 2^{1+2}} \zeta_{2}^{12^{\prime+2}}
$$

I is positive because $p 2^{i+2}>0, q 2^{i+2}>0$ and

$$
\Delta\left(\zeta_{1}^{2^{m \cdot 1}}\right)=1 \otimes \zeta_{1}^{2^{m \cdot 1}}+\zeta_{1}^{2^{m+1}} \otimes 1 .
$$

This proves part (i).
To prove (ii) let $\delta\left(\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\right]=\sum_{\lambda}\left[\psi_{\lambda_{1}}|\cdots| \psi_{\lambda_{s+1}}\right]\right.$ and let $\sum_{v}\left[\psi_{v_{1}}|\cdots| \psi_{v_{s+1}}\right]$ be the subsum of all $\left[\psi_{v_{1}}|\ldots| \psi_{v_{v+1}}\right]$ such that $\psi_{v_{j}}$ annihilates \bar{A}_{i+1} for exactly one $v_{j} \in\left\{v_{1}, \ldots, v_{s+1}\right\}$. Let

$$
\Delta(z)=\Delta\left(\zeta_{1}^{k 2^{\prime+2}} \zeta_{2}^{12^{\prime+2}}\right)=\sum_{j-1}^{n} y_{j}^{\prime} \otimes y_{j}^{\prime \prime}+1 \otimes z+z \otimes 1
$$

with $y_{j}^{\prime}, y_{j}^{\prime \prime} \in \bar{A}^{*}$. It is easy to see that $y_{j}^{\prime}, y_{j}^{\prime \prime} \in \bar{\Omega}^{*}$ for all j. Then

$$
{ }_{2} \bar{Z}=\sum_{v}\left[\psi_{v_{1}}|\cdots| \psi_{v_{s, 1}} \mid z\right]+\sum_{j=1}^{n}\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\left|y_{j}^{\prime}\right| y_{j}^{\prime \prime}\right] .
$$

By Lemma 2.5(i),

$$
g_{2}\left({ }_{2} \bar{Z}\right)=\sum_{v} g_{2}\left(\left[\psi_{v_{1}}|\cdots| \psi_{v_{s+1}} \mid z\right]\right)+\sum_{j=1}^{n}\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\right] \otimes\left(y_{j}^{\prime} \otimes y_{j}^{\prime \prime}\right) .
$$

It is easy to see that

$$
\zeta_{1}^{(k+l) 2^{2+2}} \otimes \zeta_{1}^{12^{2+3}}=y_{a}^{\prime} \otimes y_{a}^{\prime \prime} \quad \text { for some } a
$$

and that, if $k=l$,

$$
\zeta_{1}^{2^{m-1}} \otimes \zeta_{1}^{3 \cdot 2^{m \cdot 1}}=y_{b}^{\prime} \otimes y_{b}^{\prime \prime} \quad \text { for some } b
$$

Since $z \neq \zeta_{1}^{i 2^{i, 3}}$ and $z \neq \zeta_{1}^{3 \cdot 2^{m} 1}$, it follows from Lemma 2.5(ii) that

$$
\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\right] \otimes\left(\zeta_{1}^{(k+l) 2^{2+2}} \otimes \zeta_{1}^{12^{i+3}}\right) \notin g_{2}\left(\left[\psi_{v_{1}}|\cdots| \psi_{v_{s+1}} \mid z\right]\right)
$$

and that, if $k=l$,

$$
\left[\sigma\left(\theta_{1}\right)|\cdots| \sigma\left(\theta_{s}\right)\right] \otimes\left(\zeta_{1}^{2^{m \cdot 1}} \otimes \zeta_{1}^{3 \cdot 2^{m-1}}\right) \notin \sum_{v} g_{2}\left(\left[\psi_{v_{1}}|\cdots| \psi_{v_{s+1}} \mid z\right]\right)
$$

This implies the conclusion of part (iii. This completes the proof of Lemma 4.1.
Proof of Lemma 4.2. We have

$$
\Delta\left(\zeta_{1}^{k 2^{i+2}}\right)=\sum_{v=0}^{k}\binom{k}{v} \zeta_{1}^{v 2^{\prime+2}} \otimes \zeta_{1}^{(k-v) 2^{i+2}}
$$

and

$$
\Delta\left(\zeta_{2}^{12^{1+2}}\right)=\left(\zeta_{2}^{2^{1+2}} \otimes 1+1 \otimes \zeta_{2}^{2^{i+2}}+\zeta_{1}^{2^{i+2}} \otimes \zeta_{1}^{2^{i+3}}\right)^{l}
$$

So $\zeta_{1}^{p 2^{\prime+2}} \otimes \zeta_{1}^{2^{2+2}}=\zeta_{1}^{(v+l) 2^{\prime+2}} \otimes \zeta_{1}^{(k-v+2 l) 2^{\prime+2}}$ for some v with $0 \leq v \leq k$. Thus $p=v+l$ and $q=k-v+2$. If $v+l=p \geq q=k-v+2 l$, then $0=k-2 v+l \geq k-2 k+l=l-k$, i.e., $k \geq l$. If $p 2^{i+2}=2^{m-1}$ and $q 2^{i+2}=3 \cdot 2^{m-1}$, then $k-v+2 l=3(v+l)$ which implies $k-l=4 v \geq 0$, i.e., $k \geq l$. This proves (i).

To prove (ii) it suffices to show that if

$$
\zeta_{1}^{\lambda i^{i+2}} \otimes \zeta_{1}^{\mu 2^{i+3}} \in \Delta\left(\zeta_{1}^{k^{\prime} 2^{i+2}} \zeta_{2}^{i^{\prime} 2^{i+2}}\right)
$$

then $\lambda-2 \mu<k-l=(k+l)-2 l$. As shown above we have $\lambda=v+l^{\prime}$ and $2 \mu=k^{\prime}-v+2 l^{\prime}$ for some $v \leq k^{\prime}$. Then

$$
\begin{aligned}
\lambda-2 \mu & =\left(v+l^{\prime}\right)-\left(k^{\prime}-v+2 l^{\prime}\right)=2 v-k^{\prime}-l^{\prime} \\
& \leq 2 k^{\prime}-k^{\prime}-l^{\prime}=k^{\prime}-l^{\prime}<k-l .
\end{aligned}
$$

This proves (ii).
Now we prove (d). Given any non-zero class x in

$$
E_{1}^{1, s, t+2^{m+1}}=H^{s+1, t+2^{m+1}}\left(F^{(1)} / F^{(2)}\right) \cong \operatorname{Ext}_{A_{i+1}}^{s+1, t+2^{m+1}}\left(\bar{\Omega}, \mathbb{Z}_{2}\right)
$$

We have to show $d_{1}(x) \neq \overline{\alpha h_{m}^{2}}$.
By Proposition 2.4 and formula (8) x can be represented by a cocycle of the form

$$
X==\sum_{\lambda}\left[\sigma\left(\theta_{\lambda_{1}}\right)|\cdots| \sigma\left(\theta_{i_{s}}\right) \mid z_{i_{s+1}}\right]
$$

in $F^{(1)} / F^{(2)}$ where $\theta_{\lambda_{j}} \in \bar{A}_{i+1}^{*}, z_{\lambda_{s+1}} \in \bar{\Omega}^{*}$. We may assume

Each subsum of X which is a cocycle is not a boundary.

We may consider X as in $F^{(1)} \subset F\left(A^{*}\right)$. Since X is a cocycle in $F^{(1)} / F^{(2)}, \delta(X) \in F^{(2)}$. Let $\overline{\delta(X)}$ be its image in $I^{(2)} / F^{(3)}$ and let

$$
g_{2}(\overline{\delta(X)})=\sum_{v}\left[\eta_{v_{1}}|\cdots| \eta_{v_{s}}\right] \otimes\left(w_{v_{s+1}} \otimes w_{v_{s+2}}\right)
$$

$g_{2}(\overline{\delta(X)})$ is a cocycle in $F\left(A_{i+1}^{*}\right) \otimes\left(\bar{\Omega}^{*}\right)^{2}$ and, by definition, represents $d_{1}(x) \in$ $\operatorname{Ext}_{A_{1}, 1}^{s+2, t+Z^{m \cdot 1}}\left((\bar{\Omega})^{2}, \mathbb{Z}_{2}\right)$.

If $w_{v_{s}, 1} \otimes w_{v_{1}, 2} \neq \zeta_{1}^{2^{m}} \otimes \zeta_{1}^{2^{m}}$ for any v then, by Corollary 3.5(ii), $d_{1}(x)=$ $\left\{g_{2}(\overline{\delta(X)})\right\} \neq\left\{g_{2}(\bar{R})\right\}=\overline{\alpha h_{m}^{2}}$ (we recall that $\overline{\alpha h_{m}^{2}}$ is represented by the cocycle $g_{2}(\bar{R})$ in (9)).

We may thus assume
(f) s $\quad w_{r_{,-1}} \otimes w_{r_{, 2}}=\zeta_{1}^{2 m} \otimes \zeta_{1}^{2 m} \quad$ for some v.

In this case we shall prove that the sum $g_{2}(\overline{\delta(X)})$ has a subsum of the form
 and $\Sigma_{u}\left[\eta_{u_{1}}^{\prime}|\cdots| \eta_{\mu_{1}}^{\prime}\right]$ is a non-boundary cocycle. This will imply $d_{1}(x) \neq \alpha h_{m}^{2}$ again by Corollary 3.5 (ii).

For each λ let $Z_{i}=\left[c\left(\theta_{\lambda_{1}}\right)|\cdots| \sigma\left(\theta_{\lambda_{s}}\right) \mid z_{\lambda_{\lambda_{1}}}\right]$ and let ${ }_{2} \bar{Z}_{\lambda}$ be as defined in (4.1).
Then $X=\sum ; Z_{\lambda}$ and

$$
g_{2}(\overline{\delta(X)})=\sum_{i} g_{2}\left({ }_{2} \bar{Z}_{i}\right)
$$

The assumption (f) means

$$
\left[\eta_{v_{1}}|\cdots| \eta_{v_{1}}\right] \otimes\left(\zeta_{1}^{2^{m}} \otimes \zeta_{1}^{2^{\prime \prime \prime}}\right) \in g_{2}(\overline{\delta(X)})
$$

which implies

$$
\left[\eta_{v_{1}}|\cdots| \eta_{k_{1}}\right] \otimes\left(\zeta_{1}^{2^{m}} \otimes \zeta_{1}^{2^{m}}\right) \in g_{2}\left(\bar{Z}_{i}\right)
$$

for some λ. Since $2^{m}>2^{m \cdot 1}>s d_{i+1}-t$, by Lemma 4.1(i),

$$
z_{i_{1}, 1}=\zeta_{1}^{k 2^{\prime \cdots} \zeta_{2}^{\prime 2^{\prime 2}} \quad \text { with } l>0,|z|=2^{m+1}, ~}
$$

and

$$
\zeta_{1}^{2^{m}} \otimes \zeta_{1}^{2^{m \prime}} \in \Delta\left(\zeta_{1}^{k 2^{\prime \prime}} \zeta_{2}^{12^{\prime 2}}\right)
$$

By Lemma 4.2(i) the latter inplies $k \geq 1$.

We now rewrite the cocycle X as

$$
X=\sum_{\mu}\left[\sigma\left(\theta_{\mu_{1}}\right)|\cdots| \sigma\left(\theta_{\mu_{s}}\right) \mid z_{\mu_{s+1}}\right]+\sum_{a=1}^{n}\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right) \mid \zeta_{1}^{k_{2} 2^{i+2}} \zeta_{2}^{l_{2} a^{i+2}}\right]
$$

where $k_{a} \geq l_{a}>0,\left(k_{a}+3 l_{a}\right) 2^{i+2}=2^{m+1}$ for all a, and .or any μ the monomial $z_{\mu_{s+1}}$ is not of the form $\zeta_{1}^{k^{\prime} 2^{i+2}} \zeta_{2}^{\prime 2^{2+2}}$ with $k^{\prime} \geq l^{\prime}>0$ and $\left(k^{\prime}+3 l^{\prime}\right) 2^{i+2}=2^{m+1}$. The result proved in the preceding paragraph shows that the second sum is not zero. Note that $\sum_{j=1}^{s}\left|\sigma\left(\theta_{j}^{(a)}\right)\right|=t$. Since $\left|\sigma\left(\theta_{j}^{(a)}\right)\right| \geq 1$ and $t-s \leq 2^{i}-2$ it follows that $\left|\sigma\left(\theta_{j}^{a}\right)\right| \leq 2^{i}-1$ for all a and j. Let

$$
Z_{\mu}=\left[\sigma\left(\theta_{\mu_{1}}\right)|\cdots| \sigma\left(\theta_{\mu_{\mathrm{s}}}\right) \mid z_{\mu_{\mathrm{s}+1}}\right]
$$

and

$$
Z_{a}=\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right) \mid \zeta_{1}^{k_{1} a^{i+2}} \zeta_{2}^{l_{a} a^{i+2}}\right]
$$

Then

$$
g_{2}(\delta(X))=\sum_{\mu} g_{2}\left(\bar{Z}_{\mu}\right)+\sum_{a=1}^{n} g_{2}\left(: \bar{Z}_{a}\right)
$$

'.et $D=\max _{1 \leq a \leq n}\left\{k_{a}-l_{a}\right\}$. Then $D \geq 0$. We discuss in two cases: (i) $D=0$ and (ii) $D>0$.

Suppose $D=0$. Then $k_{a} 2^{i+2}=l_{a} 2^{i+2}=2^{m-1}$; so

$$
Z_{a}=\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right) \mid \zeta_{1}^{2^{m}} \zeta_{2}^{2^{m-1}}\right]
$$

for all a. We may assume $\left[\sigma\left(\theta_{1}^{(a)}|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \neq\left[\sigma\left(\theta_{1}^{(b)}\right)|\cdots| \sigma\left(\theta_{s}^{(b)}\right)\right]\right.$ if $a \neq b$. By Lemma 4.1(ii), for each a,

$$
\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{2^{m-1}} \otimes \zeta_{1}^{3 \cdot 2^{m-1}}\right) \in g_{2}\left(\bar{Z}_{a}\right)
$$

By assumption, $2^{m-1}>s d_{i+1}-t$. So, by Lemma 4.1(i) and Lemma 4.2(i),

$$
\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{2^{m-1}} \otimes \zeta_{1}^{3 \cdot 2^{m-1}}\right) \begin{cases}\notin g_{2}\left({ }_{2} \bar{Z}_{b}\right) & (b \neq a) \\ \notin g_{2}\left({ }_{2} \bar{Z}_{\mu}\right) & (\text { all } \mu)\end{cases}
$$

Thus $\sum_{a-1}^{n}\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{2^{m-1}} \otimes \zeta_{1}^{3 \cdot 2^{m-1}}\right)$ is a subsum of $g_{2}(\overline{\delta(X)})$. Note that $\left(2^{m-1}, 3 \cdot 2^{m-1}\right) \neq\left(2^{m}, 2^{m}\right)$ and $\left|\sigma\left(\theta_{j}^{(1)}\right)\right| \leq 2^{i}-1$ for all $j, 2^{m-1}$ and $3 \cdot 2^{m-1}$ are multiples of 2^{i+2} and, by (10), $\sum_{a=1}^{n}\left[\sigma\left(\theta_{1}^{(a)}|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right]\right.$ is a non-boundary cocycle.

Suppose $D>0$. We may assume that for some $n^{\prime} \leq n, D=k_{a}-l_{a}$ for $1 \leq a \leq n^{\prime}$. It is easy to see that k_{a} and l_{a} are constants for $1 \leq a \leq n^{\prime}$. Let k and l be these two constants; so $D=k-l>0$. Then

$$
Z_{a}=\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right) \mid \zeta_{1}^{k 2^{2+2}} \zeta_{2}^{12^{1+2}}\right]
$$

for $1 \leq a \leq n^{\prime}$. We may assume $\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \neq\left[\sigma\left(\theta_{1}^{(b)}\right)|\cdots| \sigma\left(\theta_{s}^{(b)}\right)\right]$ foı $a \neq b$ ($1 \leq a \leq n^{\prime}, 1 \leq b \leq n^{\prime}$). By Lemma 4.1(ii)

$$
\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{(k+l) 2^{\prime+2}} \otimes \zeta_{1}^{2^{i+3}}\right) \in g_{2}\left({ }_{2} Z_{a}\right)
$$

$$
\begin{gathered}
(k+l)^{i+2}-l 2^{i+3}=(k-l) 2^{i+2}>0 \text { and }(k+l) 2^{i+2}+l 2^{i+3}=2^{m+1} \text { imply } \\
(k+l) 2^{i+2}>2^{m}>2^{m-1}>s d_{i+1}-t .
\end{gathered}
$$

So, by Lemma 4.1(i) and Lemma 4.2(i), for $1 \leq a \leq n^{\prime}$,

$$
\left[\sigma\left(\theta_{1}^{i \alpha)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{(k+l) 2^{i+2}} \otimes \zeta_{1}^{2^{i+3}}\right) \begin{cases}\notin g_{2}\left(\bar{Z}_{b}\right) & \left(b \neq a, 1 \leq b \leq n^{\prime}\right), \\ \notin g_{2}\left(\bar{Z}_{\mu}\right) & (\text { all } \mu) .\end{cases}
$$

Since $k-d=D>k_{a}-l_{a}$ for $n^{\prime}+1 \leq a \leq n$, it follows from Lemma 4.1(i) and Lemma 4.2(ii) that for each a with $1 \leq a \leq n^{\prime}$

$$
\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{(k+l) 2^{2+2}} \otimes \zeta_{1}^{\left(2^{i+3}\right.}\right) \notin g_{2}\left({ }_{2} \bar{Z}_{b}\right)
$$

if $n^{\prime}+1 \leq b \leq n$. Thus

$$
\sum_{u-1}^{n}\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right] \otimes\left(\zeta_{1}^{\left(k+1 / 2^{2+2}\right.} \otimes \zeta_{1}^{11^{2+3}}\right)
$$

is a subsum of $g_{2}(\overline{\delta(X)})$. Note that $\left((k+l) 2^{i+2}, 12^{i+3}\right) \neq\left(2^{m}, 2^{m}\right),\left|\sigma\left(\theta_{j}^{(1)}\right)\right| \leq 2^{i}-1$ for all j and, by (10), $\sum_{a=1}^{n^{\prime}}\left[\sigma\left(\theta_{1}^{(a)}\right)|\cdots| \sigma\left(\theta_{s}^{(a)}\right)\right]$ is a non-boundary cocycie.

This completes the proof of (d) and therefore Theorem 1.1.

References

[1] J.F. Adams, On the structure and applications of the Steenrod algebra, Comm. Math. Helv. 32 (1958) 180-214.
[2] J.F. Adams, On the non-existence of elements of Hopf invariant one, Ann. Math. 72 (1960) 20-104.
[3] J.F. Adams, A periodicity theorem in homological algebra, Proc. Camb. Phil. Soc. 62 (1966) 365-377.
[4] D.W. Anderson and D.M. Davis, A vanishing theorem in homological algebra, Comm. Math. Helv. 48 (1973) 318-327.
[5] D.M. Davis, An infinite family in the cohomology of the Steenrod algebra, J. Pure Appl. Algebra. 21 (1981) 145-150.
[6] A. Livlevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962).
[7] M.E. Mahowald, The metastable homotopy of S^{n}, Mem. Amer. Math. Soc. 72 (1967).
[8] M.E. Mahowald, Some remarks on the Kervaire invariant problem from the hrmotopy point of vicw, Proc. Symp. Pure. Math. AMS. 22 (1971) 165-169.
[9] H.R. Margolis, Coalgebra over the Steenrod algebras (unpublished).
[10] J.P. May, The cohomology of restricted Lie algebras and Hopf algebra, J. Algebfa. 3 (1966) 123-146.
[1i] J.W. Milnor, The Steenrod algebra and its dual, Ann. Math. 67 (1958) 150-171.
[12] J.W. Milnor and J.C. Moore, On the strueture of Hopf algebras, Ann. Math. (2) 81 (1965) 2i1-264.
[13] F.P. Peterson, Lecture on Cobordism Theory (Kinokuniya Book Store, Tokyo, Japan, 1968).

[^0]: *Partially supported by the National Science Council of R.O.C.

