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1. Introduction

Let A denote the mod 2 Steenrod algebra. Let h; e Ext}?(Z,, Z,) be the classes
corresponding to the generators Sq* € 4 as described by Adams in [2]. D.M. Davis
shows in [5] that A; are acted on faithfully by portions of Ext}"(Z,,Z,) which
increase with i. More precisely, he shows that if a¢#0 in Ext%'(Z,,7,) with
0<t-s<2’, then ah; #0 for i=2j+1. In this paper we prove a similar result. We
prove h? are acted on faithfully by portions of Ext"(Z,,Z,) which increase with /.
To state precisely the result we fix sorne notation. Let 4; be the sub-Hopf-algebra
of A generated by Sq',Sq%...,Sq¥. The set {n|Fa#0 in A, such that |a|=n} is
bounded where |a| means deg(a). Let d; be the largest integer in this set. We will
show later that d;=(/—1)2/*2+/+5.

Theorem 1.1. Ler a be a non-zero class in Ext}'(Z,,Z,) with t—s>0. Let i be
the smallest integer such that 2'—2>=t—s. Then ah?,+0 for all m such that
2" U>sd,  —t.

Corollary 1.2. hZh}---h} #0 in Ext};'(Z,,Z;) for any finite increasing sequence
{iryia, ... 0.} Of positive integers such that the successive numerical conditions in
Theorem 1.1 are satisfied.

It is a conjecture [18] that the classes h,'2 survive the Adams spectral sequence for
the stable homotopy groups of spheres [1]. This conjecture is known to be true for
0=<i<5. If the conjecture is true, the the classes in (1.2) probably also survive the
Adams spectral sequence. These proolems, however, remain tc be done.

Theorem 1.1 stems from a conjecture of Mahowald in [7] (Conjecture V.2.4); in
particular it shows that a large part of Mahowald’s conjecture is true. We refer to
Mahowald’s memoir [7] for the significance of his conjecture in homotopy.
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The following relations hold in Ext};*(Z,, Z,):

(l) h,‘+1h' =O, (2) h|'2+2hi =0v (3) h?+l =hi+2hl;”
@) W ' hi, =0, (5) hih},=0, (6) hih},5=0.

The first four of these are due to J.F. Adams {2, 3] and the rest are due to J.P. May
[10]. It has been a conjecture that these are the only relations among the A4;’s. Davis
[{5] has given an evidence for the conjecture by showing that these relations are
closed under the squaring operations

Sq': Ext&/(Z,, Z,) - ExtA Y ¥(Z,, Z,)

of Liulevicius [6). From relations (3) we see any non-zero monomial « in the A;’s
can be uniquely expressed as & = hg"h{'h{:--- hi" where 0<i) <i,<-:-<i,, £20 and
g,=1or 2 forj=<1. Theorem 1.1 shows that monomials of this form are non-zero
provided &,=0 and the iutegers /; are far apart from one another, which is a part
of the conjecture.

Our proof of Theorem 1.1 is based on a spectral sequence of Adams [2]. In Sec-
tion 2 we describe this spectral sequence and study some of its properties in the case
which is not discussed in [2]. In Section 3 we make some calculations in the Steenrod
algebra which arise when using the spectral sequence of Adams. In Section 4 we
complete the proof of Theorem 1.1.

2. A spectral sequence of Adams

Zet I a be connected, locally finite HOpf algebra over Z,, A a sub-Hopf-algebra
of I', and I and A the augmentation ideals of I" and A respectively. Let Q=I/I*A
and Q=7/I*A. A acts on 2 and & from the left via the inclusion A =T Let F(I'*)
be the cobar construction of I. We filter it by setting

[y @] |} € FUT®)P = FP)
if @, annihilates A for at least p values of i. So FI*)=F9 > F' 5

Theorem 2.1 (Adams). This filtration of F(I'*) defines a spectral sequence {EF 1}
which converges to Ext;"(Z,,Z,) and one has

EP9 = HP 9FY DY = Ext(2)%, Z,).
Here the superscripts ‘“‘p+ ¢’ and *‘q’’ refer to homological degrees and
(2 if p=0,
TO®--®0 if p>o.

N/
p
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We recall a part of Adams’ proof of Theorem 2.1. We begin by considering the
vector-space dual of the spectral sequence [E?}. Let B(I") be the bar construction
of I'. We filter it by setting

[a, Iaz’ l”s] e B(r)\» = B»

if ¢;e A for at least s—p values of i. Then FP =(B(I")/B~)*. Thus the re-
sulting spectral sequence {E, ,} of this filtration on B(I") is the Z,-dual of {EP7}.
It suffices to show

Epq=H,, ((B'P/B'P~V = Tor,(Z,, (2)").

Adams proves this by considering certain subquotient complexes of the bar resolu-
tion I'® B(I'). Specifically he considers for each p=0 the quotient

CP=ARBP+AQB¥ YV/reoB»".

It is easy to see that C'P=A ® (B'PY/B'P~VY; so CP =0 if s< p where the suffix
s refers to homological degree.

Lemma 2.2.

Hs(c(p)) = i(g)p (s=p),
0 (s#p).

The isomorphism for s=p is obtained by projecting A to Z, and (I')? to (Q)".

Lemma 2.2 is Lemma 2.3.1 in [2] to which we refer for details of the proof.
Lemma 2.2 shows that the free A-complex C'? is a free resolution of (£)” over
A where the A-action on (©)? is determined by C'? and 2.2. Thus

E),=H,,BP/B® "= H,, (Z,®,C'")="Tor](Z,(2)").

This proves Theorem 2.1.

The action of A on @ is the usual one. For p=2 the action of .1 on (2)”, how-
ever, is not the diagonal action. For our purpose it suffices to consider this action
for p =2 which is described as follows. By the Milnor-Moore Theorem [12] I is free
as a left or right module over A. Let {y,;};>, be a right .1-base for I"with y,=1. Let
7; be the image of y; in Q. Then {$;};>, is a Z,-base for Q. Given aeA and
7, ® 7, (R, let ay,=X}_, ¥jnajw With a;;€ 4. Then

a(7p ® 74) =AZ=II Pich ® @) Pg- )

This formula is derived from Adams’ proof of Lemma 2.2 in [2]. A conceptually
simple way to describe this action is the following. I, and hence A, acts from the
left on F'®, 2=Q ® @ in a natural way. Then (@) is a A-submodule of 2 ® Q.
This A-action on (€)* can be shown to be isomorphic to the diagonal action (see
(2.1) in [4]).
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Remark 2.3. In [2] Adams discusses his spectral sequence only for the case that A
is central in T, i.e., ab=ba for all ae A and be I (to serve other purposes there).
in this case @ (hence ()P for p=2) gets trivial operations from A. It suffices to
assume A is normal in T}, i.e., I'* A=A I in order to have Q get trivial operations
from A. Here we do not impose either condition on A as in our applications of
Theorein 2.1 we shall take I" to be the Steenrod algebra A and A=A, for some /
where the A,’s are as described in Section 1 and these subalgebras are not normal
in A.

To apply Theorem 2.1 in proving Theorem 1.1 we need to study the complexes
FY/F® and FP/FY . Consider the cobar constructions F(A*) ® (@%)”, p=1,2.
Our result (Proposition 2.4) is that there are a natural embedding

fi:FAM ® @* > FY/F®
ang a projection
&:FY/F® = FA%) ® (@)’

such that both are chain equivalences. The map g, is not natural; it depends on the
choice of a right A-base for I'. It is possible to show that F?/F\¥*V is chain
equivalent to F(A1*)® (2*)” for any p. For our purpose we will only consider f;
and g.. Explicit formulae describing f; and g, will be relevant. It sufices to describe
their 7,-duals

Ji:BYBO->BA)Y®Q and &,:B(A)® Q) - BC/BY.

We begin with f,. For ae " let a be its image in Q. Given [z, |-+ |a,]e B{"/B?,
there is a unique @, such that ;¢ A. Then define f, by

Al |~ |a |ad) = {lanl"'!as-.]@@as i=s), @)
0 (i<s).

2. is a little complicated to describe. We choose a right A-base {,},>¢ for I" with
Yo=1. Then {7,};5, is a Z,-base for 2. We first define a Z,-map ¢ : M — M where
MCB'"'/B" is generated by all [a,]-|a,] such that the unique a;¢ A lies in
{7:},>1. Given [a,|---|a]e M. Let a; be the element such that a;=y, for some
k= 1. We define ¢([a, |- |a,]) by induction on j. If j=1, then set

ves (asl‘

Suppose j > 1 and suppose ¢([a; | -+ | a;]) is defined for all [a}|--+|a}] such that the in-
teger v for which @ =y, is less than j. Let a; v, = ¥} | Y@y With v €{¥i}iz0
and «,;,€A. By inductive hypothesis ¢([a, I Iaj_zl y,mla,mlaj” | ias]) is
defined for all A. Then define

oyl aa| | a) = (9] a

ollay |- a, vyl eyl ia) = la ]| |yl g || ad

+)Z;:l otla, | - la;_, Yl @l @oi |+ as.
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Here [c,|--|¢]1=0 if ¢;=1 for some i. This convention is also adopted in what
follows.

We proceed to define g,. Given [a, | IaS] R (7, ®7,) € B(A) ® ()%, we define
g,(la; | -+ | a1 ® (7, ® 7,)) by induction on s. If s=0, then set

gZ(?p ® }-’q) = [)’pl )’q]-
Suppose s>0 and suppose 2,([a; |-+ | 2] ® (7, ® 7,)) is defined. Let

{
Zl [Pk | b2 | -+ | s 10| 7]
o
be the sum of all those elements [bj|--|b;,,|b;.2] appearing in the sum

gz([azlmlas]@(?p@ 74)) such that b€ {yi}i=1 and bg,,=7y, (if there is such a
sum). Let @740 = L, Yrch @ea, 0 With ¥4 ) € {7:i}i=0 and a,; , €. Then define

gla | @y |4 ® (7, @ 7)) = [a | &:(1az] -+ | 4, ® (7, ® 7,)]
+ ; [P | @Ur, ) | b |+ | Bsvrim | YDl 3)
U
Here if @=Y ¢, |c2| |cs+,], then [c|@] denotes the sum ¥ [clc, | lcﬁ L
To give a more clear picture about the inductive formula (3) we explicitly write
it out for the cases s=1 and s=2. For s=1, given a ® (7, ® 7,) € B(4), ® (D)?, let
ay,=Y, v,pa, and let a,y,= ¥, Vi b; with y,,, yjpu € {7:}i20 and a;,b;€ A. Then
2@l ® (7, ® 7)) = [a| 75| val + £ [vipl sl val + T (1] i 531
)
For s=2, given [a,|a,] ® (7,® 7,) € B(1), ® (@), let
@QYp = E YipQss Ve = Z qu/lbj,
A J
QY= Z PvapCvs CoYjga = ; vaqudy
with Yap» Yigas Svaps Yuvigd in {}’,‘},'Z() and a, bj, Cyy dl‘ in A. Then

g4y | @) R (7,®7,) = [a, | a2 | ¥, | ¥,1 + ; [a)] 720 @] ¥,)

+ AZ [al l })).p! yjq).lbj] + :E {)';‘Aplcv,a,{ ‘ }’q]
VJ it

+ ; (yw\plcv‘ Yiga | bj] + }: [Y\‘AP‘ Yuvjgh Idllibll
IAV IAHY

Proposition 2.4. The maps f:F(A*)®@*—>FY/F® and g:F?/F S
F(A*) @ (Q*)* with their Zy-duals f, and g, defined by (2) and (3) are chain
equivalences.
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Proof. It suffices to show that f,:B"/BP-+B(A)®Q and g:B(A)® (D)*—
BY/BY are chain equivalences. Consider Adams free A-resolutions

CP=ARB+I® B(p‘”/'l"@ BP-D= 4y ®(E(p)/l§(p—l))

and the bar resolutions A ® B(A) ® (2)”? of (£)”. It is not difficult (although
tedious) to verify that

1,f/:CV">AQBAN)®Q and 1,®5:4R BA)® (Q)*—Cc?

are chain maps over A and induce isomorphisms in homology. Thus both 1, ® f,
and 1, ® g, are A-chain equivalences. So

H=1:®,41,0/ and 2, =1, ®,1,®%;

are chain equivalences. [

We conclude this section by summarizing some properties of the map g, which
follow immediately from formuia (3).

We assume A is firite dimensional over Z,. Let d be the largest integer for which
there are ron-zero elemeiits @ € A such that |a| =d. Let {v,} be a Z,-base for I such
that {y;},<1C {6,} and iet {6} be its dual base for I'*. Note that Q*C'*. In the
lemma below elements &. of a non-zero cochain [a) I Iasl in F(I'*) (or
F'7/F'7* Dy or non-zero elements in (* will be basis elements in {€*}. Let
i*:'*— A* be the Z,-dual of the inclusion i: 4 —=I. We write

[y |-+ | ® (x@») € g By ] | Bea))
if [o; |-+ | @] ® (x ® v) appears in the sum gy (I8, |-+ | B 2]}

Lemma 2.5. (i) Suppose [a, | |a,|as. 1|, 1] is a non-zero element in F®/F"
such that a, ., ,€ Q* and o, annihilates A. Then
g:([a’l!“' aslasﬂla.wll):{ - . _ ,_S+ *
T UiM@) [ [N @ (@ ® sy ) (@5, 1 € R,
(i) Given ja,|--|a,)e FA™* and x, y,z€ @*, let |B;]-++| B;.1] be an element
in FYF% such that
iﬂ[ ! .. ;B‘?l z] € (F(Z)/F(3))S+:.'.I+ i+ Z'.

If z#vy, then
lay | |a] @ (x® ) & g:(18 | -+ | Bev i | 2D

If 2=y, x| >sd~tand ¥} | |B;|<sd, then

la) |- |a] @ (x® ) & g2(1B |-+ | Bes | 2D).
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3. Some calculations in the Steenrod algebra which arise when using the speciral
sequence of Adams

Let A, be lhe sub-Hopf-algecbra of the Steen.od algebra A generated by
Sq',Sq? ..., Sq? “and let Q=A/A A,. In this section we Cetermine the structure of
Q* (Proposmon 3.1) using Milnor’s description of A and prove that 4,_, acts
trivially on certain A,-module generators of ()’ (Proposition 3.4).

We begin by recalling from Milnor [11] that

A* - 22[5_:1,62, ...]
and

!

Ar———ZZ[éhéZ!' ] (621' 229""Clz+laélé—2"--)

with coproduct given by

A(ék) = Z Ck j®£j (CO:' l)

where deg(&,)=2'—1. Let y:A*— A* be the canonical anti-automorphism of A4*
[12] and let {; = x(&;). From the definition of y we have

k-1
d=¢ G=&+ LG4 k=2 (@)

and

k
A0 =1 5O (5)

Then A*= ZZ[CI";b‘ .] and

I

A} =500, G M R Gt Craan o). (6)

Let Q=A/A*A,. Then Q*C A*.
Proposition 3.1. Q*—-ZZ[CZI ', 22',...,C,2+,,C,+2,...].

This generalizes a result of F. Peterson in [13] where he proves Proposition 3.1
for / = 1. We shall follow Peterson’s method to prove 3.1 and we begin by recalling
a result of his in [13].

A acts on A* from the left and from the right by transposing. More precisely,
given a € A and m* e .1*, define am* and m*a by {am*, b) = {m*, ba) and {(m*a, b) =
{m*, ab). The operations of A lower the degrees.

Lemma 3.2 (Peterson). Under the above A-action A* is a left and a right algebra
over A, that is, Cartan’s formula holds and

Sq(&) =&+ &2, (E)Sa=&+&
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where Sq=X7" , Sq'.

It follows from Cartan’s formula that
. IRT B LEPTR

Sq¥x? = {(Sq X) (I_Z.I.),

0 (i<y)

for all xe 4*.

Lemma33 (1) Sq? C‘+2~Ofor,1<k
(ii) Sq° 5,\ -Ofor O<si</and | zksl+1

Proof. We first deduce (ii) from (i). We may assume A=/+2—k. Then

LYY S

7ivﬂl~ 2[42 k
Sq° ¢ =(Sq” ) =0

by (i) since A+k—-1-2=<k-2.
We prove (i) by induction on k. If k=0, then A=0 and {;,;={,=¢&;n & (by
{(4)). We have

Sq'c; = Sq'&, +35¢'E = &+ g = 0.

Thus the result is true for A =0. Suppose & >0 and suppose the result is true for
k'<k. By (4)

'F
(ka2 = Z A+’—jéj'

If A=0, then

k+1 A+1
Sq'Ck.2=9a"¢ 2+ X (Sa'¢E 2 NE+ Y (2 iSa'E
Jj=1

J=1

Kk+1
.2 2 2
=&+ Y Civ2-j€-0
J=~1
.2 R
=&+ Y Gin- &+ i
1-1

/ koo 2
-“-(«f/ul*’CknﬂLzl CE+1~:‘€1> =0 (by (4)).

If A=1, then
A+l

Sq¥ .2 =897 &, 1+ X Sa¥ (G2 8)
=1

Al k+1

=0+ ¥ 8" G2 )E + X Sa*t - g
r:

kol S RN ¥ 2*
=V (Sq® 'seY . el ,+Z(Sq“t:[+ DE

rod
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A-1 a1 " A
-z Sa? ' 'sa? ¢, NISREPN LY AT

- =
I Sq? '~ l(sq? 2y : 24-4 2
—J_; q (Sq Ckv2-j) fj—l"'z: (Sa* Cki2-;)7¢;.

By mductlve hypothesis Sq Ck+2_j-Sq cm_j—o since A-1-j<A-j<sk—j<
k. So Sq?® CL+2—0 This proves Lemma 3.3.

Proof of Proposition 3.1. Forae A4 let R(a): A— A and L(a): A*— A* be the maps
defined by R(a)b=ba and L(a)b*=ab*. Consider the exact sequence

R(Sq") @@ R(Sq?)
A®--@A C®® (qﬁ‘A il » (A/AA) = Q@ —— 0.

B

[+1

Dualizing this we get an exact sequence

L(S L(S *
AD - D A* = Sah)®- @(q) A*:" O* < 0.

N vt

1+1

By Lemma 3.3 and Cartan’s formula we see
215 G2 Bt Gy e o ] C ke m* = Q%
But it is well known [9] that
{Sa(ry, ry, ...) | r; = amultiple of 2'*?~“ for 0<i=</+2,r,, ;20 for j =2}

is a Z,-base for 2 where Sq(r,r,,...) is the Milnor basis element in 4 dual to
& {2 N Smce deg(&;)=deg({;), it follows that the vector spaces Q* and
Zz[C1 (2 veees CBo1s Cv 20 --. ] have the same finite dimension in each degree and so
they are equal. This proves Proposition 3.1.

We next proceed to show that A4,_, acts trivially on certain 4;,-module generators
of (©). We recall again that the Milnor basis for A4 is {Sq(ry, 73, ...)} which is dual
to the monomial basis for the polynomial algebra A*=7,[¢&,,&,...]. Let x:A— A
be the canonical anti-automorphism of A. Then {x Sq(ry, 5, ...)} is the basis for A,
dual to the monomial basis for the polynomial algebra A*=275[{;, {5, ...]1. By
Proposition 3.1 the set

B={yx Sq(r,,rz,...)'r,=k,-2"2‘i for 0<i</+2, r;,;20 for j =2} (7)

is a Z,-base for Q. We write Sq(ry, ry, ..., ry) for Sq(ry,ry,...) if ry, ;=0 for j=1
and simply write x(ry,ry, ..., ry) for x Sq(ry, ras ... rg).

Proposition 3.4. (i) x(i 2/*"Y® x(j 2/+') are A;-module generators of (2)* where
i>0. j>0.
(ii) A,_, acts trivially on these generators (I =2).



84 W.-H. Lin

Proof. By Lemma 3.3(ii) ¢nd Cartan’s formula, quA ,"2’”:0 for 0=<A =</ Since
Sq.,Sq? ...,Sq” generate 4, it follows that ati® "' =0 for ae A;; so x( 271 are
A;-module generators of €. Then formula (1) in Section 2 shows that x(i 2'*1) ®
x(7 27*1) are A;-module generators of (€2)2. This proves (i).

To prove (ii) we first show that 4,_, acts trivially on x(j 2/*!), that is

ax(j2*)=0 foraed,_,. (*)

It suffices to show that for any monomial

b1 Iy

1+ r galel o . yl+2
”1:4’,1_‘;12 C:‘:.. ...C"_':’nz
in Q*=2,[¢2 ", ¢2, o At Qs g oon ] With M| >0, 17, <+~ <1y (if r,=1+2, then
interpret 2/*2 "« as 1), if A(m) has a term of the form n®¢'{2m with []>0, then
n projects to zero under A*—> A} . If r,</+1, then

(' @1+1@ ¢ e (re=1),

(FRN+1Q03+t @y (e = 2),
AEET ) = 4 (

)
2[«.. L

G 1"

re-1 k,
L2, A2 p yr2or, letyE
L8R ed ) >,
p=2

7/

if r,=/+2, then

. Tu 1 ro- r k(r

22 = (6, @141®0,+ L, 08" "+, 10" ) .
p=2

It follows that if x® CVGA(Cr/:;"ZM “), then q is a multiple of 2'*! (we allow ¢ =0)

and x is of the form

)":‘ 2/ /1\2/" i A 2l¢l S
5i| 4 .. »

25} : !,,

with 2<#,<---<2, (if 1, =/+1, then 2/*!"'==1). This implies

. 1+
— o220 e, 2N
n= gl Csa 84

with 2<s:<---<s, (if s, 2/+1, then 2/*' “%=1), Since |#|>0, u,>0 for some a.
From (6) (with / replaced by /— 1) we see n projects to zero in A} |. This proves (*).
Similarly,

ax(i2*Y=ayQ2i2)=0 in Q' =A/A *A, |, foraed,_,. (*%)

Let {7.}u=0 ({75}520) be a right A;-base (A,_,-base) for 4 such that B = {Pataso
is the Z»-base for 2 in (7). Given ae A, . Let ax(i2'*)=¥, yj,a;, with



Cohomolugy of the Steenrod algebra 85

Vi) € {¥8}p=0 and a;; € A;_;. The result (++) implies a;;) € A,_, for each A (since
i>0). Let

Yio = 2 Zian i,
with 7.1 € {¥a}e=0 and b;, ) =A;. Then
ax(i2"* = ; Vi Bi iy

Since aj(,l,e}i,_,, from formula (1) in Section 2 and the result (*) above we see

a(x( 2*HY @ x(j 2!y = Z i @ bja v @y x(j 2!+ = 0.

This completes the proof of Proposition 3.4.

We conclude this section with the following corollary to Proposition 3.4 which
is rather clear. In stating the corollary we note that if @€ 4, with |a|<2'~'—1, then
a€A,_,, and so Ext§’ (Z2, Zo)=Ext}/(Z,, 7;) for 1—-s<2'"1-2,

Corollary 3.5. (1) If ¥, [a,, | la,_‘] is a cocycle in F(A}) representing a non-zero
class in Ext}(ZyZ,) and if |a,|<2""'-1 for all v, then ¥, [a, ||, ]®
("' @) is a cocycle in F(A})® (2*) representing a non-zero class in
Exty' >*(R)%, Z,) where i>0, j>0.

(i) Let R=Y, o] |, 1® (7" ®¢¥") be as in (i) and let R, =
L, (8,18, 1® (., ®n,. ) be another cocycle in F(A})® (2% such that
either r;,,m®nﬂm¢c;'2“'®c' 2! Sfor any u or R, has a subsum of the form
(L, 1B 18]+ | B DO @) such that |5, |<2'"' =1 for all A,
(p.@)#,j) and T, [By,| By, | B1] is a non-boundary covvcle. Then {R} #{R,}
in Exty' 2*(2)4 2,).

4. Proof of Theorem 1.1

Let a,s,t,i,d;,, and m be as in Theorem 1.1. These notations will be fixed
throughout this section. We recall that d;, , is the largest integer for which there are
non-zero elements a € A, | such that |a|=d;.,. From (6) of Section 3 we see

diy = |xQ2-1,2" 1,3, )] =i 2" +i+6.

By assumption 2" ~!>sd;,,~t and t—s=<2'-2. Since t—s>0 and a#0, Adams
vanishing theorem on Ext}"(Z;,Z,) [3] implies #+3=3s. From these one easily
verifies that

(@) 2™*! is a positive multiple of 2+,

(b) t+2" 1> 22— 1)(s+1), and

) d;, ;>3 -2+1)=1
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To prove Theorem 1.1 we apply Theorem 2.1 by taking '=A4 and A =A4,,,. By
Proposition 3.1

3+

Q*"(A/A /‘1,\*,])"l Z”[C] 15" [ -rgiz+2!§i+3""]°

So B={x(r,,r3,...)|rj~k 2037/ for j<i+2 and r;,,=0 for k=3} is a right
A;, -base for A. Let i*:A*— A}, | be dual to the inclusion i:4,,,—>A and let
G:Af.; 2 A* be defined by o({['(3-)={"{s--. Then i*e=14 . By
Proposition 2.4 there is a chain equivalence

f] F(AHI)@.Q*—*F“)/FQ)
which is given by

fillay | e ® ag, ) = [a(e) | -+ | a(@s) | e ). (8)

This formula is obtained by dualizing (2) in Section 2. With respect to the
A, , -base B for A above we define

2::B(4,,)® (@)~ BY/BY
by formula (3) in Section 2 and then take its Z,-dual
g2: FO/FY = F(A%, ) @ (2%

By Proposition 2.4, g, is a chain equivalence. It is not easy to v/rite a formula for
&>. All we need about g, for what follows is Lemma 2.5, and we recall that there
is a convention in the lemma which for the present case is the foliowing. When we
consider a cochain [, |-+ | &,] in F(4*) (or F(A},))) or in FP/F?*1 the elements
a, will be mmonomials in the variables (.

We proceed to prove Theorem 1.1. If s=1, then a=h, for some k. Adams [2]
has shown A4} #0 if j>k+2. Since

2" V> sdi ~t=di, ~t=d;,, 32 -2+1)

(by (¢)) it follows that m >k +2. So hh%#0. We may thus assume s=2.
Let ¥, [a;, |- a; 1€ F(A*)"' be a cocycle representing the class @. Then

. m+ 1
Y a
61

R=Y lay |+ |a, [ [¢F") € Fa*y+21+2

is a cocycle representing ah’,. By (a), {f € Q* Since 2'—=2=r-s and ey |21,
it follows that 2'~12>a; | for all Aj; so @y ea(A},,). Therefore R lies in F?

and its image R in F@ ’/P‘” is non-zero. By Lemma 2.5(i) the cocycle g,(R)e
F(A* ) ® (0*)* is given by

&R =¥ (%) | |[iMe)® " ® ¢ ©)
and since j’(l,z’s <2'—1, by Corollary 3.5(it), it represents a non-zero class :n

.2' ! 2’?1-1 . 2" Znnl P 2 .
Ef>tt = Exty T ((Q)7 Zy);
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we denote this class by a—h_,z;. To complete the proof of Theorem 1.1 it suffices to
show that

(d) d)(x)#ah for any x in E}"*'*¥""' = Ext§ 1+ 2" (Q, 7,), and

(e) dy(¥)#ah? for any y in E0 S+Lr+2m lCExt”' 1427 (7, 7).

;+|

It is well known, by the May spectral sequence [.J], that
Ext§ (Z22Z)=0 for f>Q"*2-1)s.

From (b) we see Ext}" “ +2""(7,,Z,)=0. This proves (e).

It takes more work to prove (d). We need two lemmas. Let Z = [ar(())l |0‘(03)|z]
be a cochain in F(A*°*"*?""" with 6, € A}, ze3* Suppose é(Z) =
X, [r,hf ‘|1, 7a,.,1#0 where & is the coboundary homomorphism of F(A*).
Since the coproduct A:A4*—>A*® A* maps Q* to A*® Q2* it follows that
7),.,€@* for all 1; s0 8(Z) e F. Let ,Z = ¥, [z, |---|1',,S+l 7,,.,,] be the subsum
of all [z, ||t |74.,] such that Ty, anmhilates A;,, for only one
u:€{Hy, ..., s} Then ,ZeF®, Let ,Z be its image in F@/F® and consider

8:,2).

Lemma 4.1. (i) If the sum 8, (;Z) is non-zero and has a term of the form
[ | |0 ® CFPF @ (F*™) with (p+)2*2=2"*" and p2**>sd;,,~1, then
‘—0(6) Sfor all j, z= C"ZM 1202 Sfor some k and 1>0 with |z|=2""" and

szl ®Cq21 EA(C{(Z”-IIZHZ).
i+2 i+2
(ii) Conversely suppose z={¥*""(1*"" with >0 and |z|=2™*". Then

(@8] |e@N® C* " @27 e g,(,2)
and, if k=1,
[6(8)] -+ | 6N @ 'R+ ') € g2(,2).
Lemma 4.2. (i) Suppose (P*"° ® ¢(7*" eA(c“* 27 and (k+30)2*2=2"""1 If

p=qorif p2't2=2""1 and g2'*2=32""1 then k>I
(i) If k-I>k'~1’, then

k+n2? 23 k22 pra?
W DZT R T e ALK T,

Proof of Lemma 4.1. Let T(u)=Ir, l--- |77, ]. Then g:(:Z)= I, &T(w)). So
]| 1] ® (CPF " ®¢7¥ ) = g(T(v)  for some v.

Let v; be the only element in {vy,...,v,,} such that 7, annihilates 4,.,.
If j<s, then either

® 1, € 4(a(6;_1)), 1, =0(0;) fork=j-2,

l]|

7, =0(0,_;) forj+l1<k=<s+1 and T, =%
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or
1,®71,.,€4060),  1,=0@) forksj-1,
T, =0(0) forj+2<k=<s+1(fj<s) and 71, , =2z

Since |6(6;)| <d;,, for all k it follows that both cases imply L;*' |7, |=<sd,.,. By
Lemma 2.5(ii) this would imply

] 0] ® P @) ¢ 22TV)).

Therefore j =s+1. Then either

T‘.‘ ® Tv‘ 0 € A(a(es)):

1, =0(f) forkss-1 and 71, =g,
or
T\‘( - ® T&'w 2 € A(Z) and "’J = 0(0/) for 1 SJ =S.

Since g(T\v))#0, by Lemma 2.5(i), 7,_, e Q% and

gTWM) =Ir, | |n1®@,, @1, )

= [m ] 1@ P @),
By assumption, p2'*2>sd;,;—t and s=2. By (c), d;,;>1. So p2'*?>d;,, which
implies 7, ® 1, = n,®(P* " ¢ A(a(6,)). Hence
5, @1 = e (*)

with 2i=(p+@)2"**=2"""and n; =1, =a(6)) for 1=/ <s.

Since 7 is a monomial in Q*=2Z,[¢% " ¢¢ .., B Civp -] it follows from
formula (5) in Section 3 that z has to be of the form C,"’z”l é'zm in order to have
(¥). We have |z =22+ 312"+ =2™*! Since 2'*2|2"*,} is even, say /’=2l. So

7= C,““:Ca/z”:-
/ is positive because p2'*°>0, g2'**>0 and
ym o+

A =10 + ' ®1.

This proves part (i).
To prove (ii) let 6([6(91)l ---,0(95)] =Y, vy, l ' v, Jandlet ¥ [w, , | Wy, ]

be the subsum of all [w,, l | ¥, , ] such that w,, annihilates A;,, for exactly one
v,e{v,....vg,}. Let

AR =AY =Y ¥Ry +1@z+2®1
Jj=1
with v/, v'e A* It is easy to see that y;, v/ € @* for all j. Then

T2 VN BRI K1 RN CCH BRI CATIA R
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By Lemma 2.5(i),

£62) = L alwy, |- |ws, [2D+ L [66) [ [a@N @ (0 ® ).

It is easy to see that
(D2 @ 12 = ' @ y2 for some a
and that, if k=/,
'@ =y, ®@y; for some b.
Since z#¢/*"" and z# )Y ' it follows from Lemma 2.5(ii) that
[0(6) |- | a@N @ @) ¢ 2allwy, | |, |2
and that, if k=/,

(000 |- [a@N® " " ®& )¢ X gallw, | |ws,, [ 2D.

This implies the conclusion of part (ii. This completes the proof of Lemma 4.1. U]

Proof of Lemma 4.2. We have
k
142 k pair _ i+
at? )=§A:o(v>c,2 @
and

A2 =@ @110l el Y.

So (P @I =gt @ k202" for some v with 0<v=k. Thus p=v+/
and g=k-v+2. If v+i=p=g=k—v+2l, then O=k-2v+iz=k-2k+I1=i-k,
ie., k=l If p2i*2=2""" and q2'*2=3-2""", then k—v+2/=3(v+/) which
implies k—1=4v=0, i.e., k=1l. This proves (i).

To prove (ii) it suffices to show that if

12”2 2:*3 krzn'.’ l,2nz
G ®L° ed 27 )

then A-2u<k-Il=(k+1)-2l. As shown above we have A=v+/’ and
2u=k’'—v+2l’ for some v=<k’. Then

A=2u=W+Il)-(k'=v+2l')=2v=-k'=I'
<2k'-k'-lI'sk'-I'<k-1

This proves (ii). [

Now we prove (d). Given any non-zero class x in

m-1 m=+1 m+l =
Ell,S,I+2 — HS+1.(+Z (F(”/F(Z)) = Ext;:l]'l+2 (Q,Zz).



90 W.-H. Lin

We have to show d, (x)#:m.
By Proposition 2.4 and formula (8) x can be represented by a cocycle of the form

X =Y [0@;)]]06:)]z,]
in FY/F® where 6, € A}, |, z,,,, € 2*. We may assume

Each subsum of X which is a cocycle is not a boundary. (10)

We may consider X as in F*"C F(A*). Since X is a cocycle in FV/F® §(X)e F?.
Let §(X) be its image in F®/F® and let

g0XN =X In, | |n]@ 0w, ®w, ).

s+1 s+

£:06(X)) is a cocycle in F(A}, ) ® (2*)* and, by definition, represents d,(x)e
Exty ™7 (@)% Zy).

If w, ®w, #{ ®{ for any v then, by Corollary 3.5(ii), d,(x)=
{22(0(X))} #{£2(R)} = ahZ, (we recall that ah?, is represented by the cocycle g,(R)
in (9)).

We may thus assume

ym

“m
(f w, @w, ={ ®¢ for some v.

In this case we shall prove that the sum g,(6(X)) has a subsum of the form
(X, ] [ m )@ @) such that |, | <2'~1 and (p2'*2, g2+ %)% (2", 2")
and ¥ [ry,',l | | 1] is a noia-boundary cocycle. This will imply d, (x):talfz,, again
by Corollary 3.5(ii).

For each A let ZA-=[c1(9,{l)|---]a(()&‘)]z,l“l] and let ,Z, be as defined in (4.1).
Then X=Y, Z; and

£:(0(X)) = 2. 2:(:Z;).

The assumption (f) means

[, [ )@ ® L) € g23(X))
which implies
|- I 1@ @G € 8::.Z))
for some A. Since 2" >2" '>sd,,,—1, by Lemma 4.1(i),

vk

- YR .
S, =TT with >0, jzf =2
and

,v:"" L am yk:l': ylz:—l
Sy ®%] EA(S] 5 ).

By Lemma 4.2(i) the latter implies k =/.
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We now rewrite the cocycle X as

X=X [06,)||0,)

Z”S,,I] + Z‘ [0’(0{“))] eee ia(os(a)) ‘ C]k"znzczl"z“z]

where k,=1,>0, (k,+3/,)2"*2=2"*! for all a, and .or any u the monomial z, _
is not of the form {¥?*?¢4?** with k’=/">0 and (k’+31")27+2=2"*1_ The result
proved in the preceding paragraph shows that the second sum is not zero. Note that
5., lo(6™)| =t. Since |a(6/”)|=1 and t—s=2'-2 it follows that |¢(67)| <2'-1
for all @ and j. Let

ZH = [0'(9‘“) l vee Ia-(gﬂs) I zu“,]
and

Za = [0(0}0)” ‘0'(0_20)) | Clkazuz zlazi,z].
Then

g20X) =Y 8,GZ,)+ E, 8:(: Z,).
u a=

'.et D=max
(ii) D>0. | |
Suppose D=0. Then k,2'*2=1,2*2=2"""1: 50

am -1
]

Z, = [6(0)] | a6 | ¥ ' 2
for all a. We may assume [6(0?]---|a(6!)] #[a(8\)|---| (6] if a#b. By
Lemma 4.1(ii), for each a,

06| |a(@MN® (P @R ) e g2,

By assumption, 2’"“>sd,~+, —t. So, by Lemma 4.1(1) and Lemma 4.2(i),
¢8,:Z,) (b#a),
¢8,(:Z,) (all p).

Thus £7_, [6(0/)| |0 ® (¥ '@} ") is a subsum of g,(5(X)). Note
that (2™7!,3+2""1)#(2",2™) and |6(6")|<2'-1 for all j,2""' and 3+2""" are
multiples of 2'*2 and, by (10), £"_, [6(8®|---| (6! is a non-boundary cocycle.

Suppose D>0. We may assume that for some n’sn, D=k,— 1/, for l<a<n’ It
is easy to see that k, and /, are constants for 1<a<n’. Let k and / be these two
constants; so D=-k—1/>0. Then

Z,=[a(0®) |- |a(@@) | £F¥ " 2

for 1<a<n’. We may assume [g(8{")] -] a(8)N #[a(8\?) |- | a(8))] for a#b
(lsa<n’,1<b=<n’). By Lemma 4.1(ii)

[0(8)] | a@N @ C* MR (27 € 8:(:2,).

1<a<n 1ka—1,}. Then D=0. We discuss in two cases: (i) D=0 and

(o™ - Ia(os‘“’n@(c%""@cf'z'"')i
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(k+0)*2=12*3=(k-1)2""2>0 and (k+1)2*2+121*3=2m*1 imply
(k+1)2*2>2m>2" "V >6d.,  —t.
So, by Lemma 4.1(i) and Lemma 4.2(i), for l<sa<n’,

¢ 8::Zy) (b#al<b=n’),
¢ £,(;Z,) (@l u).

Since k—I/=D>k,— 1, for n’'+1<a<n, it follows from Lemma 4.1(i) and Lemma
4.2(ii) that for each g with 1<a<n’

[6(0@) ] | a8 ® (C,‘k+1)2“2® CIIZM) ¢ 82(2Zp)

if +1<b<n. Thus

(0@ 0@ © @ @ g |

f: [6(8)] - | a0 ® (KN @ ¢

is a subsum of g,(9(X)). Note that ((k+/)2"*%12"*%)#(2",2™), |a(6")|<2/-1
for all j and, by (10), £7_, [a(8{)]---|6(8\"")] is a non-boundary cocycis.
This completes the proof of (d) and therefore Theorem 1.1.
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